cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225650 The greatest common divisor of Landau g(n) and n.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 4, 1, 6, 1, 20, 21, 2, 1, 24, 5, 2, 1, 14, 1, 30, 1, 4, 3, 2, 35, 36, 1, 2, 39, 40, 1, 42, 1, 44, 15, 2, 1, 24, 7, 10, 3, 52, 1, 18, 55, 56, 3, 2, 1, 60, 1, 2, 21, 8, 65, 66, 1, 4, 3, 70, 1, 72, 1, 2, 15, 76, 77, 78, 1
Offset: 0

Views

Author

Antti Karttunen, May 11 2013

Keywords

Crossrefs

A225648 gives the position of ones, and likewise A225651 gives the positions of fixed points, that is, a(A225651(n)) = A225651(n) for all n.

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j*b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n < 8, 3, PrimePi[Ceiling[1.328*Sqrt[n* Log[n] // Floor]]]]]; a[n_] := GCD[n, g[n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 02 2016, after Alois P. Heinz *)
  • Scheme
    (define (A225650 n) (gcd (A000793 n) n))
    ;; Scheme-code for A000793 can be found in the Program section of that entry.

Formula

a(n) = gcd(n, A000793(n)).