cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225651 Numbers k that divide A000793(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 14, 15, 20, 21, 24, 30, 35, 36, 39, 40, 42, 44, 52, 55, 56, 60, 65, 66, 70, 72, 76, 77, 78, 84, 85, 90, 91, 95, 99, 102, 105, 110, 114, 115, 117, 119, 120, 126, 130, 132, 133, 136, 138, 140, 143, 152, 153, 154, 155, 156, 161, 165, 170
Offset: 1

Views

Author

Antti Karttunen, May 16 2013

Keywords

Comments

After 1, a subset of A225649.
Also, for all n, A225650(a(n)) = a(n) and A225655(a(n)) = A000793(a(n)).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    g:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while not irem(g(k), k)=0 do od; k
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, May 22 2013
  • Mathematica
    Reap[For[n=1, n <= 40, n++, If[Divisible[Max[LCM @@@ IntegerPartitions[n] ], n], Sow[n]]]][[2, 1]]
    (* or, for a large number of terms: *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n - p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Reap[For[k=1, k <= 1000, k++, If[Divisible[g[k], k], Sow[ k]]]][[2, 1]] (* Jean-François Alcover, Feb 28 2016, after Alois P. Heinz *)