A225651 Numbers k that divide A000793(k).
1, 2, 3, 4, 6, 10, 12, 14, 15, 20, 21, 24, 30, 35, 36, 39, 40, 42, 44, 52, 55, 56, 60, 65, 66, 70, 72, 76, 77, 78, 84, 85, 90, 91, 95, 99, 102, 105, 110, 114, 115, 117, 119, 120, 126, 130, 132, 133, 136, 138, 140, 143, 152, 153, 154, 155, 156, 161, 165, 170
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n, i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0 or i<1, 1, max(b(n, i-1), seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n)))) end: g:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))): a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while not irem(g(k), k)=0 do od; k end: seq(a(n), n=1..70); # Alois P. Heinz, May 22 2013
-
Mathematica
Reap[For[n=1, n <= 40, n++, If[Divisible[Max[LCM @@@ IntegerPartitions[n] ], n], Sow[n]]]][[2, 1]] (* or, for a large number of terms: *) b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n - p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; g[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Reap[For[k=1, k <= 1000, k++, If[Divisible[g[k], k], Sow[ k]]]][[2, 1]] (* Jean-François Alcover, Feb 28 2016, after Alois P. Heinz *)
Comments