cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225701 Expansion of chi(q)^5 / chi(q^5) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 5, 10, 15, 30, 55, 80, 120, 190, 285, 410, 585, 840, 1190, 1640, 2240, 3070, 4170, 5570, 7400, 9830, 12960, 16920, 21990, 28520, 36805, 47180, 60225, 76720, 97350, 122880, 154610, 194110, 242880, 302740, 376295, 466710, 577270, 711800, 875520, 1074790
Offset: 0

Views

Author

Michael Somos, May 17 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*q + 10*q^2 + 15*q^3 + 30*q^4 + 55*q^5 + 80*q^6 + 120*q^7 + 190*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^5 / QPochhammer[ -q^5, q^10], {q, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1-x^k)^5 * (1+x^k)^10 * (1+x^(10*k)) / ((1-x^(4*k))^5 * (1+x^(5*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^5 + A) * eta(x^20 + A) / (eta(x + A)^5 * eta(x^4 + A)^5 * eta(x^10 + A)^2), n))};

Formula

Expansion of eta(q^2)^10 * eta(q^5) * eta(q^20) / (eta(q)^5 * eta(q^4)^5 * eta(q^10)^2) in powers of q.
Euler transform of period 20 sequence [ 5, -5, 5, 0, 4, -5, 5, 0, 5, -4, 5, 0, 5, -5, 4, 0, 5, -5, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A223903.
a(n) = (-1)^n * A138521(n). a(n) = 5 * A210458(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Empirical: Sum_{n>=0} a(n)/exp(Pi*n) = sqrt(5) - 1. - Simon Plouffe, Mar 02 2021