A225701 Expansion of chi(q)^5 / chi(q^5) in powers of q where chi() is a Ramanujan theta function.
1, 5, 10, 15, 30, 55, 80, 120, 190, 285, 410, 585, 840, 1190, 1640, 2240, 3070, 4170, 5570, 7400, 9830, 12960, 16920, 21990, 28520, 36805, 47180, 60225, 76720, 97350, 122880, 154610, 194110, 242880, 302740, 376295, 466710, 577270, 711800, 875520, 1074790
Offset: 0
Keywords
Examples
G.f. = 1 + 5*q + 10*q^2 + 15*q^3 + 30*q^4 + 55*q^5 + 80*q^6 + 120*q^7 + 190*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^5 / QPochhammer[ -q^5, q^10], {q, 0, n}]; nmax=60; CoefficientList[Series[Product[(1-x^k)^5 * (1+x^k)^10 * (1+x^(10*k)) / ((1-x^(4*k))^5 * (1+x^(5*k))),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^5 + A) * eta(x^20 + A) / (eta(x + A)^5 * eta(x^4 + A)^5 * eta(x^10 + A)^2), n))};
Formula
Expansion of eta(q^2)^10 * eta(q^5) * eta(q^20) / (eta(q)^5 * eta(q^4)^5 * eta(q^10)^2) in powers of q.
Euler transform of period 20 sequence [ 5, -5, 5, 0, 4, -5, 5, 0, 5, -4, 5, 0, 5, -5, 4, 0, 5, -5, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A223903.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Empirical: Sum_{n>=0} a(n)/exp(Pi*n) = sqrt(5) - 1. - Simon Plouffe, Mar 02 2021
Comments