A225704 Composite squarefree numbers n such that p(i)-4 divides n+4, where p(i) are the prime factors of n.
6, 10, 14, 15, 30, 35, 66, 266, 455, 806, 4154, 4686, 6665, 10370, 16646, 22781, 31146, 36305, 72086, 205871, 246506, 473711, 570011, 653666, 733586, 900581, 904046, 1422410, 1941971, 1969565, 2023010, 2807255, 2821269, 3009821, 3043274, 3355271, 3880301
Offset: 1
Keywords
Examples
Prime factors of 205871 are 29, 31 and 229. We have that (205871+4)/(29-4) = 8235, (205871+4)/(31-4) = 7625 and (205871+4)/(229-4) = 915.
Programs
-
Maple
with(numtheory); A225704:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225704(10^9,4);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 4, p - 4]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)
Extensions
Extended by T. D. Noe, May 17 2013