cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225704 Composite squarefree numbers n such that p(i)-4 divides n+4, where p(i) are the prime factors of n.

Original entry on oeis.org

6, 10, 14, 15, 30, 35, 66, 266, 455, 806, 4154, 4686, 6665, 10370, 16646, 22781, 31146, 36305, 72086, 205871, 246506, 473711, 570011, 653666, 733586, 900581, 904046, 1422410, 1941971, 1969565, 2023010, 2807255, 2821269, 3009821, 3043274, 3355271, 3880301
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 205871 are 29, 31 and 229. We have that (205871+4)/(29-4) = 8235, (205871+4)/(31-4) = 7625 and (205871+4)/(229-4) = 915.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225704:=proc(i,j) local c, d, n, ok, p, t;
    for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225704(10^9,4);
  • Mathematica
    t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 4, p - 4]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)

Extensions

Extended by T. D. Noe, May 17 2013

A225706 Composite squarefree numbers n such that p(i)-6 divides n+6, where p(i) are the prime factors of n.

Original entry on oeis.org

6, 10, 14, 15, 21, 30, 35, 42, 70, 78, 105, 154, 170, 210, 357, 759, 1110, 6195, 42465, 43554, 61755, 94605, 106386, 146910, 189399, 229119, 276914, 453590, 924099, 1239870, 2407119, 3915714, 4404394, 4524074, 5819145, 7396394, 8324869, 23701854, 30242654, 33413919
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 8324869 are 7, 19, 53 and 1181. We have that (8324869+6)/(7-6) = 8324875, (8324869+6)/(19-6) = 640375, (8324869+6)/(53-6) = 177125 and (8324869+6)/(1181-6) = 7085.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225706:=proc(i,j) local c, d, n, ok, p, t;
    for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225706(10^9,6);
  • Mathematica
    t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 6, p - 6]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)

Extensions

Extended by T. D. Noe, May 17 2013
Showing 1-2 of 2 results.