A225705 Composite squarefree numbers n such that p(i)-5 divides n+5, where p(i) are the prime factors of n.
21, 91, 187, 391, 3451, 4147, 6391, 7579, 8827, 9499, 9823, 11803, 15283, 21307, 22243, 26887, 29563, 36091, 42763, 49387, 62491, 63427, 84091, 89947, 107707, 116083, 126451, 139867, 155227, 227263, 270391, 287419, 302731, 317191, 320827, 376987, 381667, 433939
Offset: 1
Keywords
Examples
Prime factors of 6391 are 7, 11 and 83. We have that (6391+5)/(7-5) =3198, (6391+5)/(11-5) = 1066 and (6391+5)/(83-5) = 82.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory); A225705:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225705(10^9,5);
-
Mathematica
t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 5] > 0 && Union[Mod[n + 5, p - 5]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)