A225708 Composite squarefree numbers n such that p(i)-8 divides n+8, where p(i) are the prime factors of n.
10, 22, 55, 70, 154, 190, 322, 385, 442, 595, 682, 2002, 2737, 3619, 5530, 14986, 23782, 24817, 25102, 26767, 30430, 31042, 34762, 37810, 85462, 106582, 141427, 171790, 189727, 225910, 243217, 248482, 255142, 272782, 307090, 381547, 388102, 471262, 637849, 798490
Offset: 1
Keywords
Examples
Prime factors of 381547 are 23, 53 and 313. We have that (381547+8)/(23-8)=25437, (381547+8)/(53-8)=8479 and (381547+8)/(313-8)=1251.
Programs
-
Maple
with(numtheory); A225708:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225708(10^9,8);
-
Mathematica
t = {}; n = 0; While[Length[t] < 40, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 8, p - 8]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)