cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225708 Composite squarefree numbers n such that p(i)-8 divides n+8, where p(i) are the prime factors of n.

Original entry on oeis.org

10, 22, 55, 70, 154, 190, 322, 385, 442, 595, 682, 2002, 2737, 3619, 5530, 14986, 23782, 24817, 25102, 26767, 30430, 31042, 34762, 37810, 85462, 106582, 141427, 171790, 189727, 225910, 243217, 248482, 255142, 272782, 307090, 381547, 388102, 471262, 637849, 798490
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 381547 are 23, 53 and 313. We have that (381547+8)/(23-8)=25437, (381547+8)/(53-8)=8479 and (381547+8)/(313-8)=1251.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225708:=proc(i,j) local c, d, n, ok, p, t;
    for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225708(10^9,8);
  • Mathematica
    t = {}; n = 0; While[Length[t] < 40, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 8, p - 8]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)