A225710 Composite squarefree numbers n such that p(i)-10 divides n+10, where p(i) are the prime factors of n.
14, 22, 35, 55, 65, 77, 102, 110, 143, 165, 182, 221, 455, 494, 665, 935, 1001, 1173, 1430, 2717, 2795, 4505, 4526, 4862, 5957, 6479, 11526, 27521, 30485, 34661, 35126, 45917, 49715, 52910, 53846, 81686, 90574, 106865, 113477, 118745, 139073, 140822, 147095
Offset: 1
Keywords
Examples
Prime factors of 34661 are 11, 23 and 137. We have that (34661+10)/(11-10) = 34671, (34661+10)/(23-10) = 2667 and (34661+10)/(137-10) = 273.
Programs
-
Maple
with(numtheory); A225710:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225710(10^9,10);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 10, p - 10]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)
Extensions
Extended by T. D. Noe, May 17 2013