A225711 Composite squarefree numbers n such that p(i)+1 divides n-1, where p(i) are the prime factors of n.
385, 2737, 6061, 6721, 17641, 24769, 25201, 31521, 34561, 49105, 66385, 76609, 79401, 113221, 136081, 180481, 194833, 199801, 254881, 268801, 311905, 321937, 328321, 362881, 436645, 469201, 506521, 545905, 547561, 558145, 628705, 642505, 649153, 778261, 884305
Offset: 1
Keywords
Examples
Prime factors of 24769 are 17, 31 and 47. We have that (24769-1)/(17+1) = 1376, (24769-1)/(31+1) = 774 and (24769-1)/(47+1) = 516.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..150
- Qi-Yang Zheng, There are infinitely many (-1,1)-Carmichael numbers, arXiv:2207.08641 [math.NT], 2022.
Programs
-
Maple
with(numtheory); A225711:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225711(10^9,-1);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 1, p + 1]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)