cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225711 Composite squarefree numbers n such that p(i)+1 divides n-1, where p(i) are the prime factors of n.

Original entry on oeis.org

385, 2737, 6061, 6721, 17641, 24769, 25201, 31521, 34561, 49105, 66385, 76609, 79401, 113221, 136081, 180481, 194833, 199801, 254881, 268801, 311905, 321937, 328321, 362881, 436645, 469201, 506521, 545905, 547561, 558145, 628705, 642505, 649153, 778261, 884305
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 24769 are 17, 31 and 47. We have that (24769-1)/(17+1) = 1376, (24769-1)/(31+1) = 774 and (24769-1)/(47+1) = 516.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225711:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225711(10^9,-1);
  • Mathematica
    t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 1, p + 1]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)

A225709 Composite squarefree numbers n such that p(i)-9 divides n+9, where p(i) are the prime factors of n.

Original entry on oeis.org

15, 21, 33, 35, 39, 55, 77, 91, 119, 143, 195, 231, 255, 299, 455, 551, 651, 663, 715, 935, 1131, 1155, 1419, 2015, 2035, 2431, 3003, 3111, 3927, 4611, 5451, 7215, 7735, 8151, 8671, 9191, 10455, 11571, 15015, 15477, 16511, 18343, 18615, 23541, 24871, 25415, 28391
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 16511 are 11, 19 and 79. We have that (16511+9)/(11-9) = 8260, (16511+9)/(19-9) = 1652 and (16511+9)/(79-9) = 236.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225709:=proc(i,j) local c, d, n, ok, p, t;
    for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225709(10^9,9);
  • Mathematica
    t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 9, p - 9]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)

A382484 Least composite squarefree numbers k > n such that p + n divides k - n, for each prime p dividing k.

Original entry on oeis.org

385, 182, 195, 1054, 165, 26781, 1015, 4958, 2193, 79222, 5159, 113937, 5593, 160937, 6351, 196009, 3657, 6318638, 2755, 1227818, 12669, 41302, 2795, 152358, 12121, 366821, 21827, 17578, 36569, 12677695, 38335, 457907, 2553, 15334, 141155, 69722351, 1045, 14003, 4823, 2943805
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2025

Keywords

Examples

			a(20) = 1227818 = 2 * 19 * 79 * 409 and
  (1227818 - 20) /(2 + 20) = 55809;
  (1227818 - 20) /(19 + 20) = 31482;
  (1227818 - 20) /(79 + 20) = 12402;
  (1227818 - 20) /(409 + 20) = 2862.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local d,k,ok,n,p;
    for n from 1 to 17 do for k from n+1 to q do
    if issqrfree(k) and not isprime(k) then p:=factorset(k); ok:=1;
    for d from 1 to nops(p) do if frac((k-n)/(p[d]+n))>0 then ok:=0;
    break; fi; od; if ok=1 then lprint(n,k); break; fi; fi; od; od; end: P(10^8);
  • PARI
    isok(k,n) = if (!issquarefree(k) || isprime(k), return(0)); my(f=factor(k)[,1]); for (i=1, #f, if ((k-n) % (f[i]+n), return(0));); return(1);
    a(n) = my(k=n+1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 30 2025

Extensions

More terms from Michel Marcus, Mar 30 2025
Showing 1-3 of 3 results.