cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225756 Runs of consecutive numbers with the same number of divisors.

Original entry on oeis.org

2, 3, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 44, 45, 57, 58, 75, 76, 85, 86, 87, 93, 94, 95, 98, 99, 104, 105, 116, 117, 118, 119, 122, 123, 133, 134, 135, 136, 141, 142, 143, 145, 146, 147, 148, 158, 159, 171, 172, 177, 178, 189, 190, 201, 202, 203
Offset: 1

Views

Author

Jean-François Alcover, May 15 2013

Keywords

Comments

The first run of length 3 is {33,34,35}; the first of length 4: {116, 117, 118, 119}; of length 5: {2641, 2642, 2643, 2644, 2645}; of length 6: {1081, 1082, 1083, 1084, 1085, 1086}; of length 7: {25781, 25782, 25783, 25784, 25785, 25786, 25787}; of length 8: {77673, 77674, 77675, 77676, 77677, 77678, 77679, 77680}.

Examples

			Sequence begins:
2, 3;
14, 15;
21, 22;
26, 27;
33, 34, 35;
38, 39;
etc.
		

Crossrefs

Cf. A225757 (same sum of divisors).
Cf. A225758 (same number and sum of divisors).
Cf. A140578 (first term of every run).

Programs

  • Mathematica
    sel = Select[Range[300], DivisorSigma[0, #] == DivisorSigma[0, # + 1] &]; Union[sel, sel + 1]
    Flatten[SequencePosition[DivisorSigma[0,Range[300]],{x_,x_}]]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 22 2021 *)

A225757 Table of consecutive numbers with the same sum of divisors.

Original entry on oeis.org

14, 15, 206, 207, 957, 958, 1334, 1335, 1364, 1365, 1634, 1635, 2685, 2686, 2974, 2975, 4364, 4365, 14841, 14842, 18873, 18874, 19358, 19359, 20145, 20146, 24957, 24958, 33998, 33999, 36566, 36567, 42818, 42819, 56564, 56565, 64665, 64666, 74918, 74919, 79826
Offset: 1

Views

Author

Jean-François Alcover, May 15 2013

Keywords

Comments

Are 3 consecutive terms possible? There are none less than 10^12. See A002961. - T. D. Noe, May 15 2013

Examples

			Sequence begins:
14, 15;
206, 207;
957, 958;
1334, 1335;
etc.
		

Crossrefs

Cf. A225756 (same number of divisors), A225758 (same number and sum of divisors), A002961 (first number of each pair).

Programs

  • Mathematica
    sel = Select[Range[100000], DivisorSigma[1, #] == DivisorSigma[1, # + 1] &]; Union[sel, sel + 1]
    Flatten[SequencePosition[DivisorSigma[1,Range[80000]],{x_,x_}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 13 2017 *)
  • PARI
    v=List();t=[1,3];for(n=3,1e6,t=[t[2],sigma(n)];if(t[1]==t[2],listput(v,n-1);listput(v,n)));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, May 15 2013
Showing 1-2 of 2 results.