A225760 Counts of internal lattice points within more than one primitive Pythagorean triangle (PPT).
2287674594, 983574906769, 16155706018465, 24267609913869, 72461523834219, 367110963344658, 473161567692022, 8504240238563547, 9271267603660839, 13796686490781630, 28200194168137420, 68964192934317607, 121927568913483970, 125247439852891719, 280877330289234924, 288885660249168850
Offset: 1
Examples
a(1) = 2287674594 as it is the first count of internal lattice points within more than one PPT. It has (a, b) = (18108, 252685) and (28077, 162964).
Links
- Frank A. Stevenson, Table of n, a(n) for n = 1..80
- Eric Weisstein's World of Mathematics, Pick's Theorem
- Wikipedia, Pick's theorem
Programs
-
Mathematica
getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getlist[j_] := (newlist=getpairs[j]; Table[(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1) (2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, {m, 1, Length[newlist]}]); maxterms=4000; table=Sort[Flatten[Table[getlist[2p+1], {p, 1, 2maxterms}]]]; n=1; table1={}; While[n
-
PARI
is(n)=my(b,s,N=2*n);fordiv(n>>valuation(n,2),a,if(gcd(b=N/a+1, a+1)==1 && issquare(b^2+(a+1)^2) && s++>1, return(1)));0 \\ Charles R Greathouse IV, May 15 2013
Formula
If integers a < b are the perpendicular sides of a PPT, then Pick's theorem gives the count of internal lattice points, I = (a-1)*(b-1)/2 and is comparable to the area, A = a*b/2.
Extensions
a(8) and beyond from Frank A. Stevenson, Nov 29 2023
Comments