A225786 Numbers k such that oblong(2*k) + oblong(k) is a square, where oblong(k) = A002378(k) = k*(k+1).
0, 48, 15552, 5007792, 1612493568, 519217921200, 167186558132928, 53833552500881712, 17334236718725778432, 5581570389877199773488, 1797248331303739601284800, 578708381109414274413932208, 186342301468900092621684886272
Offset: 1
Examples
48*49 + 96*97 = 108^2, so 48 is in the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (323,-323,1).
Crossrefs
Programs
-
C
#include
#include int main() { unsigned long long i, s, t; for (i = 0; i< (1ULL<<31); i++) { s = 2*i*(2*i+1) + i*(i+1); t = sqrt(s); if (s==t*t) printf("%llu, ", i); } return 0; } -
Mathematica
LinearRecurrence[{323, -323, 1}, {0, 48, 15552}, 15] (* Bruno Berselli, May 18 2013 *)
Formula
G.f.: 48*x*(1+x)/((1-x)*(1-322*x+x^2)). - Bruno Berselli, May 18 2013
a(n) = (3/20)*((2-sqrt(5))^(4n-4)+(2+sqrt(5))^(4n-4)-2). - Bruno Berselli, May 18 2013
Extensions
a(6) from Ralf Stephan, May 17 2013
More terms from Bruno Berselli, May 18 2013
Comments