cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225827 Number of binary pattern classes in the (3,n)-rectangular grid: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 6, 24, 168, 1120, 8640, 66816, 529920, 4212736, 33632256, 268713984, 2148630528, 17184194560, 137456517120, 1099579785216, 8796367749120, 70369826308096, 562954298720256, 4503616874348544, 36028866141093888, 288230651566489600, 2305844111946547200
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11.
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,6,24,168]; [n le 4 select I[n] else 12*Self(n-1)-24*Self(n-2)-96*Self(n-3)+256*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{12, -24, -96, 256}, {1, 6, 24, 168}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 6 x - 24 x^2 + 120 x^3) / ((1 - 4 x) (1 - 8 x) (1 - 8 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 8*a(n-1) + 8*a(n-2) - 64*a(n-3) - 2^(2n-3) with n>2, with a(0)=1, a(1)=6, a(2)=24.
a(n) = 2^(3n/2-1)*(2^(3n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((3*n-1)/2-1)*(2^((3*n-1)/2) + 2^((n-1)/2) + 3) if n is odd.
G.f.: (1-6*x-24*x^2+120*x^3)/((1-4*x)*(1-8*x)*(1-8*x^2)). [Bruno Berselli, May 17 2013]

Extensions

More terms from Vincenzo Librandi, Sep 04 2013