cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225836 Numbers of form 2^j*(4k+1), j >= 0, k >= 1.

Original entry on oeis.org

5, 9, 10, 13, 17, 18, 20, 21, 25, 26, 29, 33, 34, 36, 37, 40, 41, 42, 45, 49, 50, 52, 53, 57, 58, 61, 65, 66, 68, 69, 72, 73, 74, 77, 80, 81, 82, 84, 85, 89, 90, 93, 97, 98, 100, 101, 104, 105, 106, 109, 113, 114, 116, 117, 121, 122, 125, 129, 130, 132, 133
Offset: 1

Views

Author

Ralf Stephan, May 16 2013

Keywords

Comments

A091072 without the powers of 2.

Crossrefs

Cf. A091067.

Programs

  • Magma
    [n: n in [1..200] | d gt 1 and IsOne(d mod 4) where d is n div 2^Valuation(n,2)]; // Bruno Berselli, May 16 2013
  • Mathematica
    mx = 149; t = {}; Do[n = 2^j (4 k + 1); If[n <= mx, AppendTo[t, n]], {j, 0, Log[2, mx]}, {k, mx/4}]; Union[t] (* T. D. Noe, May 16 2013 *)
  • PARI
    for(n=1,200,t=n/2^valuation(n,2);if(t>1&&(t%4==1),print1(n,",")))
    
  • PARI
    is(n)=n>>=valuation(n,2); n%4==1 && n>1 \\ Charles R Greathouse IV, Sep 27 2015
    
  • PARI
    list(lim)=my(v=List(),t); forstep(n=5,lim,4, listput(v,t=n); while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Sep 27 2015
    

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Sep 27 2015