A225837 Numbers of form 2^i*3^j*(6k+1), i, j, k >= 0.
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 21, 24, 25, 26, 27, 28, 31, 32, 36, 37, 38, 39, 42, 43, 48, 49, 50, 52, 54, 55, 56, 57, 61, 62, 63, 64, 67, 72, 73, 74, 75, 76, 78, 79, 81, 84, 85, 86, 91, 93, 96, 97, 98, 100, 103, 104, 108, 109, 110, 111, 112
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [1..200] | IsOne(d mod 6) where d is n div (2^Valuation(n,2)*3^Valuation(n,3))]; // Bruno Berselli, May 16 2013
-
Mathematica
mx = 122; t = {}; Do[n = 2^i*3^j (6 k + 1); If[n <= mx, AppendTo[t, n]], {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, mx/6}]; Union[t] (* T. D. Noe, May 16 2013 *)
-
PARI
for(n=1,200,t=n/(2^valuation(n,2)*3^valuation(n,3));if((t%6==1),print1(n,",")))
-
Python
from sympy import integer_log def A225837(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(((x//3**i>>j)+5)//6 for i in range(integer_log(x,3)[0]+1) for j in range((x//3**i).bit_length())) return bisection(f,n,n) # Chai Wah Wu, Feb 02 2025
Comments