A225850 Inverse of permutation in A167151.
0, 1, 2, 3, 4, 6, 8, 5, 10, 12, 14, 16, 7, 18, 20, 22, 24, 26, 9, 28, 30, 32, 34, 36, 38, 40, 11, 42, 44, 46, 48, 50, 52, 54, 56, 13, 58, 60, 62, 64, 66, 68, 70, 72, 74, 15, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 17, 96, 98, 100, 102, 104, 106, 108, 110, 112
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a225850 = fromJust . (`elemIndex` a167151_list)
-
Mathematica
nmax = 100; A5228 = {1}; Module[{d = 2, k = 1}, Do[While[MemberQ[A5228, d], d++]; k += d; d++; AppendTo[A5228, k], {n, 1, nmax}]]; a46[n_] := For[k = 1, True, k++, If[A5228[[k]] > n, Return[k - 1]]]; a47[n_] := If[n == 1, 1, a46[n] (a46[n] - a46[n - 1])]; a48[n_] := a48[n] = If[n == 1, 0, a48[n-1] + (1 - (a46[n] - a46[n-1]))]; a49[n_] := If[n == 1, 0, a48[n] (a48[n] - a48[n - 1])]; a[n_] := If[n < 3, n, 2 (a47[n] + a49[n]) - (a46[n] - a46[n - 1])]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 09 2021 *)
-
Scheme
(define (A225850 n) (if (< n 3) n (- (* 2 (+ (A232747 n) (A232749 n))) (- (A232746 n) (A232746 (- n 1)))))) ;; Antti Karttunen, Dec 04 2013
Formula
If n < 3, a(n) = n, otherwise a(n) = (2*(A232747(n)+A232749(n))) - (A232746(n)-A232746(n-1)). - Antti Karttunen, Dec 04 2013
Comments