cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A225923 Expansion of q^(-1/2) * k(q) * (1 - k(q)^4) * (K(q) / (Pi/2))^6 / 4 in powers of q where k(), k'(), K() are Jacobi elliptic functions.

Original entry on oeis.org

1, 20, -74, -24, 157, 124, 478, -1480, -1198, 3044, -480, 184, 2351, -1720, -3282, -5728, 2480, 1776, 10326, 9560, -8886, -9188, -11618, 23664, -16231, -23960, 11686, -9176, 60880, 16876, -18482, -3768, -35372, -15532, 3680, -31960, -4886, 47020, -2976, 44560
Offset: 0

Views

Author

Michael Somos, May 20 2013

Keywords

Comments

In Glaisher (1907) denoted by gamma(m) defined in section 63 on page 38.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Chan and Combes (2024) page 2 is g(z) = eta(z)^8 eta(4z)^4 + 8 eta(4z)^12 identified as the unique newform of weight 6 and level 8 with LMFDB label 8.6.a.a. - Michael Somos, Jun 25 2025

Examples

			G.f. = 1 + 20*x - 74*x^2 - 24*x^3 + 157*x^4 + 124*x^5 + 478*x^6 - 1480*x^7 + ...
G.f. = q + 20*q^3 - 74*q^5 - 24*q^7 + 157*q^9 + 124*q^11 + 478*q^13 - 1480*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 38).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^12 + 32 q (QPochhammer[ q] QPochhammer[ q^4]^2)^4, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ 8 q QPochhammer[ q^4]^12 + (QPochhammer[ q]^2 QPochhammer[ q^4])^4, {q, 0, 2 n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^12 + 32 * x * eta(x + A)^4 * eta(x^4 + A)^8, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( 8 * x * eta(x^4 + A)^12 + eta(x + A)^8 * eta(x^4 + A)^4, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^6 / (eta(x + A) * eta(x^4 + A)^2))^4 + 16 * x * (eta(x + A) * eta(x^4 + A)^2)^4, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2  + A)^12 / (eta(x + A)^5 * eta(x^4 + A)^4))^4 - x^2 * (4 * eta(x^4 + A)^4 / eta(x + A))^4, n))}; /* Michael Somos, Jul 20 2013 */

Formula

Expansion of (psi(x) * phi(-x^2)^2)^4 + 16 * x * (psi(x) * psi(-x)^2)^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (phi(x)^8 - 256 * x^2 * psi(x^2)^8) * psi(x)^4 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jul 20 2013
Expansion of q^(-1/2) * (eta(q)^12 + 32 * q * eta(q)^4 * eta(q^4)^8) in powers of q.
Expansion of q^(-1) * eta(q^4)^4 * (eta(q)^8 + 8 * eta(q^4)^8) in power of q^2. - Michael Somos, Jun 25 2025
G.f. is a period 1 Fourier series which satisfies f(-1/(8*t)) = 512 * (t/i)^6 * f(t) where q = exp(2*Pi*i*t).
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)) if p > 2.
G.f.: Product_{k>0} (1 - x^k)^12 + 32 * x * (Product_{k>0} (1 - x^k) * (1 - x^(4*k))^2)^4.
|a(n)| = A002292(n). a(n) = A000735(n) + 32 * A225872(n).

A002291 Absolute value of Glaisher's beta'(2n+1).

Original entry on oeis.org

0, 1, 4, 2, 8, 13, 28, 26, 56, 69, 48, 134, 80, 182, 84, 312, 280, 204, 332, 142, 816, 91, 196, 780, 224, 526, 244, 1198, 2216, 767, 508, 390, 400, 1167, 1424, 466, 2264, 1391, 1392, 3796, 1480, 11, 1768, 2274, 1320, 1508, 1984, 8450
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For beta' itself, see A225872, and for beta, see A322032.

Programs

  • Mathematica
    Abs[CoefficientList[Series[x*QPochhammer[x]^4*QPochhammer[x^4]^8, {x, 0, 60}], x]] (* Vaclav Kotesovec, Oct 08 2019 *)

A225912 Expansion of q * (phi(-q^2) * psi(-q)^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, -8, 20, 0, -74, 96, -24, 0, 157, -432, 124, 0, 478, 704, -1480, 0, -1198, 792, 3044, 0, -480, -4320, 184, 0, 2351, 3344, -1720, 0, -3282, 5184, -5728, 0, 2480, -4752, 1776, 0, 10326, -6688, 9560, 0, -8886, -8448, -9188, 0, -11618, 32832, 23664, 0, -16231
Offset: 0

Views

Author

Michael Somos, May 20 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 8*q^2 + 20*q^3 - 74*q^5 + 96*q^6 - 24*q^7 + 157*q^9 - 432*q^10 + ...
		

Crossrefs

Cf. A225923 (bisection?)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ -(EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, I q^(1/2)]^2 / 4 )^4, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^4])^4, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A))^4, n))};

Formula

Expansion of (eta(q)^2 * eta(q^4))^4 in powers of q.
Euler transform of period 4 sequence [-8, -8, -8, -12, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^14 (t/i)^6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225872.
G.f.: x * (Product_{k>0} (1 - x^k)^2 * (1 - x^(4*k)))^4.

A322032 a(n) = Glaisher's function beta(2n+1).

Original entry on oeis.org

0, 16, -64, 32, 128, -208, 448, -416, -896, 1104, -768, 2144, 1280, -2912, -1344, -4992, 4480, 3264, 5312, 2272, -13056, 1456, -3136, 12480, -3584, -8416, -3904, -19168, 35456, 12272, 8128, -6240, -6400, -18672, -22784, 7456, -36224, 22256
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Comments

When divided by 16, becomes A225872.

Crossrefs

Showing 1-4 of 4 results.