A225876 Composite n which divide s(n)+1, where s is the linear recurrence sequence s(n) = -s(n-1) + s(n-2) - s(n-3) + s(n-5) with initial terms (5, -1, 3, -7, 11).
4, 14791044, 143014853, 253149265, 490434564, 600606332, 993861182, 3279563483
Offset: 1
Examples
A225984(4) = 11, and 11 == 3 (mod 4). Since 4 is composite, it is a pseudoprime with respect to A225984.
Links
- K. Brown, Proof of Generalized Little Theorem of Fermat, proves that for prime p, a(p) == a(1) (mod p) for recurrences of the form of A225984.
- R. Holmes, comments to M. McIrvin's post on Google+ (found terms 4 through 7)
Programs
-
PARI
N=10^10; default(primelimit, N); M = [0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; 1, 0, -1, 1, -1]; a(n)=lift( trace( Mod(M, n)^n ) ); ta(n)=lift( trace( Mod(M, n) ) ); { for (n=2, N, if ( isprime(n), next() ); if ( a(n)==ta(n), print1(n, ", "); ); ); } /* Matt McIrvin, after Joerg Arndt's program for A013998, May 23 2013 */
Extensions
Terms 4 through 7 found by Richard Holmes, added by Matt McIrvin, May 27 2013
a(8) from Dana Jacobsen, Aug 29 2016
Comments