A225883 a(n) = (-1)^n * (1 - 2^n).
0, 1, -3, 7, -15, 31, -63, 127, -255, 511, -1023, 2047, -4095, 8191, -16383, 32767, -65535, 131071, -262143, 524287, -1048575, 2097151, -4194303, 8388607, -16777215, 33554431, -67108863, 134217727, -268435455, 536870911, -1073741823, 2147483647, -4294967295
Offset: 0
Examples
G.f. = x - 3*x^2 + 7*x^3 - 15*x^4 + 31*x^5 - 63*x^6 + 127*x^7 - 255*x^8 + 511*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28.
- Index entries for linear recurrences with constant coefficients, signature (-3,-2).
Programs
-
Magma
[(-1)^n*(1 - 2^n): n in [0..50]]; // G. C. Greubel, Aug 09 2018
-
Mathematica
a[ n_] := If[ n<0, 0, (-1)^n (1 - 2^n)]; LinearRecurrence[{-3,-2}, {0,1}, 50] (* G. C. Greubel, Aug 09 2018 *)
-
PARI
{a(n) = if( n<0, 0, (-1)^n * (1 - 2^n))};
-
PARI
{a(n) = if( n<0, 0, polcoeff( x / ((1 + x) * (1 + 2*x)) + x * O(x^n), n))};
Formula
G.f.: x / ((1 + x) * (1 + 2*x)) = 1 / (1+x) - 1 / (1 + 2*x).
E.g.f.: exp(-x) - exp(-2*x). a(n) = -2 * a(n-1) - (-1)^n if n>0.
a(n) = -(-1)^n * A000225(n). a(n) = -3 * a(n-1) - 2 * a(n-2) if n>1.
REVERT transform is A001003 omitting a(0)=0.
INVERT transform is A108520.
2^n = a(n+1)^2 - a(n) * a(n+2).
Comments