A226115 Least positive integer not of the form p_m - p_{m-1} + ... +(-1)^(m-k)*p_k with 0 < k < m <= n, where p_j denotes the j-th prime.
1, 2, 3, 6, 7, 10, 11, 14, 18, 18, 20, 20, 24, 24, 28, 28, 34, 34, 40, 40, 42, 42, 46, 46, 46, 54, 56, 56, 58, 58, 60, 64, 78, 78, 80, 80, 94, 94, 98, 98, 104, 104, 106, 106, 106, 106, 118, 118, 118, 118, 122, 122, 140, 140, 146, 146, 152, 152, 158, 158
Offset: 1
Keywords
Examples
a(4) = 6, since 2,3,5,7 are the initial four primes, and 1=3-2, 2=5-3, 3=7-5+3-2, 4=5-3+2, 5=7-5+3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), 2794-2812.
Programs
-
Mathematica
s[0_]:=0 s[n_]:=s[n]=Prime[n]-s[n-1] R[j_]:=R[j]=Union[Table[s[j]-(-1)^(j-i)*s[i],{i,0,j-2}]] t=1 Do[Do[Do[If[MemberQ[R[j],m]==True,Goto[aa]],{j,PrimePi[m]+1,n}];Print[n," ",m];t=m;Goto[bb]; Label[aa];Continue,{m,t,Prime[n]-1}];Print[n," ",counterexample];Label[bb],{n,1,100}]
Comments