cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225920 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+5) and a(1) = 1.

Original entry on oeis.org

1, 13, 48, 150, 447, 1312, 3831, 11167, 32531, 94748, 275938, 803605, 2340292, 6815476, 19848236, 57802615, 168334451, 490228448, 1427657419, 4157665074, 12108072013, 35261476137, 102689486632, 299055281267, 870917405325, 2536310757258, 7386317253546, 21510645891422
Offset: 1

Views

Author

Clark Kimberling, May 21 2013

Keywords

Comments

Conjecture: a(n) is linearly recurrent. See A225918 for details.
The sequence does not satisfy any linear recurrence of order below 50, which suggests it's unlikely to exist. - Max Alekseyev, Jan 27 2022

Examples

			a(1) = 1 by decree; a(2) = 13 because 1/7 + ... + 1/17 < 1 < 1/7 + ... + 1/(13+5), so that a(3) = 48 because 1/19 + ... + 1/52 < 1/7 + ... + 1/18 < 1/19 + ... + 1/(48+5).
Successive values of a(n) yield a chain: 1 < 1/(1+6) + ... + 1/(13+5) < 1/(13+6) + ... + 1/(48+5) < 1/(48+6) + ... + 1/(150+5) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.912229..., it appears that lim_{n->infinity} b(n) = log(R) = 1.068918... .
		

Crossrefs

Cf. A225918.

Programs

  • Mathematica
    nn = 11; f[n_] := 1/(n + 5); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]

Formula

For n>=3, a(n) = ceiling( (a(n-1)+5.5)^2 / (a(n-2)+5.5) - 5.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022

Extensions

a(12)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(18) corrected by and a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022