A225922 a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+7) and a(1) = 1.
1, 16, 58, 176, 507, 1436, 4043, 11359, 31890, 89506, 251193, 704933, 1978258, 5551574, 15579326, 43720081, 122691130, 344306598, 966223316, 2711500429, 7609249779, 21353742568, 59924740904, 168166051476, 471922288540, 1324349620283, 3716505787761, 10429583743512
Offset: 1
Keywords
Examples
a(1) = 1 by decree; a(2) = 15 because 1/9 + ... + 1/21 < 1 < 1/9 + ... + 1/(15+7), so that a(3) = 58 because 1/23 + ... + 1/57 < 1/9 + ... + 1/22 < 1/23 + ... + 1/(58+7). Successive values of a(n) yield a chain: 1 < 1/(1+8) + ... + 1/(15+7) < 1/(15+8) + ... + 1/(58+7) < 1/(58+8) + ... + 1/(176+7) < ... Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.80628..., it appears that lim_{n->infinity} b(n) = log(R) = 1.03186... .
Crossrefs
Cf. A225918.
Programs
-
Mathematica
nn = 11; f[n_] := 1/(n + 7); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
Formula
For n>=3, a(n) = ceiling( (a(n-1)+7.5)^2 / (a(n-2)+7.5) - 7.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022
Extensions
a(10)-a(17) from Robert G. Wilson v, May 22 2013
a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022
Comments