cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177005 Numbers k such that k^k = k (mod prime(k)).

Original entry on oeis.org

1, 4, 169, 391, 1546, 16761, 18278, 20201, 21775, 31120, 126882, 178465, 9502273, 10553442, 24677776, 56923413, 422766345, 1759518201, 4152696703, 6800832991, 14421293461, 106195400697, 667339219893, 915091102299
Offset: 1

Views

Author

Farideh Firoozbakht, May 02 2010

Keywords

Comments

20201 is a prime term of this sequence. What is the next such prime?
The next prime term is a(20) = 6800832991. - Giovanni Resta, May 10 2020

Crossrefs

Programs

  • Mathematica
    Do[If[PowerMod[n, n, Prime[n]] == n, Print[n]], {n, 350000000}]
  • PARI
    is(k) = Mod(k, prime(k))^k == k; \\ Jinyuan Wang, May 09 2020

Extensions

a(17) from Jinyuan Wang, May 09 2020
a(18)-a(24) from Giovanni Resta, May 10 2020

A225945 Numbers k such that prime(k) divides k^k + 1.

Original entry on oeis.org

1, 6, 60, 136, 124796, 3919272, 18363918, 153037808, 965108649, 3140421892, 5961162423, 20437804784
Offset: 1

Views

Author

Alex Ratushnyak, May 21 2013

Keywords

Comments

a(12) > 2*10^10. - Giovanni Resta, May 23 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], (p = Prime[#]; PowerMod[#, #, p] == p - 1) &] (* Giovanni Resta, May 23 2013 *)
  • Python
    from sympy import nextprime, prime
    from itertools import count, islice
    def agen(startn=1): # generator of terms
        pn = prime(startn)
        for n in count(startn):
            if pow(n, n, pn) == pn - 1:
                yield n
            pn = nextprime(pn)
    print(list(islice(agen(), 5))) # Michael S. Branicky, May 25 2023

Extensions

a(6)-a(11) from Giovanni Resta, May 23 2013
a(12) from Michael S. Branicky, May 25 2023
Showing 1-2 of 2 results.