A225807
Numbers n such that (17^n - 2^n)/15 is prime.
Original entry on oeis.org
2, 83, 1907, 2591, 16223, 17183
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# - 2^#)/15 ]& ]
-
is(n)=ispseudoprime((17^n-2^n)/15) \\ Charles R Greathouse IV, Jun 06 2017
A229542
Numbers n such that (19^n - 2^n)/17 is prime.
Original entry on oeis.org
11, 19, 79, 631, 1787, 2011, 2381, 20219, 49523
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (19^# - 2^#)/17 ]& ]
-
is(n)=ispseudoprime((19^n-2^n)/17) \\ Charles R Greathouse IV, Jun 13 2017
A241921
Numbers k such that (15^k - 4^k)/11 is prime.
Original entry on oeis.org
2, 1097, 2243, 2857, 4357, 6803, 20747, 24571
Offset: 1
Cf.
A004063,
A028491,
A057468,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032,
A210506,
A128347,
A225955,
A062581.
-
Select[Prime[Range[1, 100000]], PrimeQ[(15^# - 4^#)/11]&]
-
is(n)=ispseudoprime((15^n-4^n)/11) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-3 of 3 results.
Comments