A375161
Numbers k such that (23^k - 2^k)/21 is prime.
Original entry on oeis.org
5, 11, 197, 4159
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
A375236
Numbers k such that (21^k - 2^k)/19 is prime.
Original entry on oeis.org
2, 3, 353, 751, 9587
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
A229542
Numbers n such that (19^n - 2^n)/17 is prime.
Original entry on oeis.org
11, 19, 79, 631, 1787, 2011, 2381, 20219, 49523
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (19^# - 2^#)/17 ]& ]
-
is(n)=ispseudoprime((19^n-2^n)/17) \\ Charles R Greathouse IV, Jun 13 2017
A377031
Numbers k such that (27^k - 2^k)/25 is prime.
Original entry on oeis.org
2, 3, 269, 401, 631, 701, 1321, 2707, 5471, 6581
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236.
A377856
Numbers k such that (21^k + 2^k)/23 is prime.
Original entry on oeis.org
11, 17, 47, 2663
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A057187,
A057188,
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A228922,
A229542,
A375161,
A375236,
A377031.
A230139
Numbers n such that (17^n - 4^n)/13 is prime.
Original entry on oeis.org
3, 5, 7, 11, 31, 101, 887, 4861
Offset: 1
Cf.
A004063,
A028491,
A057468,
A059801,
A121877,
A128024,
A128025,
A128026,
A128027,
A128028,
A128029,
A128030,
A128031,
A128032,
A210506,
A128347,
A128352,
A225807.
-
Select[Prime[Range[1, 100000]], PrimeQ[(17^# - 4^#)/13]&]
-
is(n)=ispseudoprime((17^n-4^n)/13) \\ Charles R Greathouse IV, Jun 13 2017
A376329
Numbers k such that (45^k - 2^k)/43 is prime.
Original entry on oeis.org
2, 7, 89, 167, 8101, 96517
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A376470
Numbers k such that (29^k - 2^k)/27 is prime.
Original entry on oeis.org
2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236.
A377180
Numbers k such that (43^k - 2^k)/41 is prime.
Original entry on oeis.org
167, 797, 1009, 54941
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377699
Numbers k such that (35^k - 2^k)/33 is prime.
Original entry on oeis.org
2, 17, 53, 211, 4013, 55207
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
Showing 1-10 of 48 results.
Comments