cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A377031 Numbers k such that (27^k - 2^k)/25 is prime.

Original entry on oeis.org

2, 3, 269, 401, 631, 701, 1321, 2707, 5471, 6581
Offset: 1

Views

Author

Robert Price, Oct 13 2024

Keywords

Comments

The definition implies that k must be a prime.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(27^# - 2^#)/25] &]

A377856 Numbers k such that (21^k + 2^k)/23 is prime.

Original entry on oeis.org

11, 17, 47, 2663
Offset: 1

Views

Author

Robert Price, Nov 09 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(21^# + 2^#)/23] &]

A376329 Numbers k such that (45^k - 2^k)/43 is prime.

Original entry on oeis.org

2, 7, 89, 167, 8101, 96517
Offset: 1

Views

Author

Robert Price, Nov 19 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(45^# - 2^#)/43] &]

A376470 Numbers k such that (29^k - 2^k)/27 is prime.

Original entry on oeis.org

2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1

Views

Author

Robert Price, Sep 24 2024

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(29^# - 2^#)/27] &]

A377180 Numbers k such that (43^k - 2^k)/41 is prime.

Original entry on oeis.org

167, 797, 1009, 54941
Offset: 1

Views

Author

Robert Price, Oct 18 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(43^# - 2^#)/41] &]

A377699 Numbers k such that (35^k - 2^k)/33 is prime.

Original entry on oeis.org

2, 17, 53, 211, 4013, 55207
Offset: 1

Views

Author

Robert Price, Nov 05 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(35^# - 2^#)/33] &]

A377718 Numbers k such that (41^k - 2^k)/39 is prime.

Original entry on oeis.org

2, 41, 97, 131, 2411, 7321
Offset: 1

Views

Author

Robert Price, Nov 04 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(41^# - 2^#)/39] &]

A377779 Numbers k such that (31^k - 2^k)/29 is prime.

Original entry on oeis.org

5, 17, 541, 701, 769
Offset: 1

Views

Author

Robert Price, Nov 06 2024

Keywords

Comments

The definition implies that k must be a prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# - 2^#)/29] &]

A377800 Numbers k such that (33^k - 2^k)/31 is prime.

Original entry on oeis.org

71, 103, 1213, 2441, 2789, 4159
Offset: 1

Views

Author

Robert Price, Nov 07 2024

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(33^# - 2^#)/31] &]

A377814 Numbers k such that (37^k - 2^k)/35 is prime.

Original entry on oeis.org

3, 11, 43, 19963
Offset: 1

Views

Author

Robert Price, Nov 08 2024

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(37^# - 2^#)/35] &]
Showing 1-10 of 44 results. Next