A225960 Number of permutations of [n] having exactly one strong fixed block.
0, 1, 1, 3, 9, 38, 198, 1229, 8819, 71825, 654985, 6615932, 73357572, 886078937, 11583028581, 162939646239, 2454350815033, 39415438078466, 672282146765650, 12137067564016917, 231223273420524311, 4635720862911035149, 97565878042828417209, 2150797149322137710488
Offset: 0
Keywords
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..450 (first 201 and last 2 terms from Alois P. Heinz)
Programs
-
Maple
b:= proc(n) b(n):= -`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end: a:= n-> add(b(i)*add(b(j), j=0..n-i-1), i=0..n-1): seq(a(n), n=0..25);
-
Mathematica
nmax = 25; A052186zero = Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1/x]/E^(1/x) + 1), {x, 0, nmax+1}]], x]]; suma = ConstantArray[0, nmax+1]; s = 0; Do[s = s + A052186zero[[j+1]]; suma[[j+1]] = s, {j, 0, nmax}]; Flatten[{0, Table[Sum[A052186zero[[i+1]]*suma[[n-i]], {i, 0, n-1}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 05 2015, more efficient program for big nmax *)
Formula
a(n) ~ 2 * (n-1)! * (1 - 1/n + 2/n^3 + 11/n^4 + 97/n^5 + 1105/n^6 + 13905/n^7 + 189633/n^8 + 2803873/n^9 + 44875599/n^10), for coefficients see A260957. - Vaclav Kotesovec, Aug 29 2014, extended Aug 05 2015
Comments