cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225960 Number of permutations of [n] having exactly one strong fixed block.

Original entry on oeis.org

0, 1, 1, 3, 9, 38, 198, 1229, 8819, 71825, 654985, 6615932, 73357572, 886078937, 11583028581, 162939646239, 2454350815033, 39415438078466, 672282146765650, 12137067564016917, 231223273420524311, 4635720862911035149, 97565878042828417209, 2150797149322137710488
Offset: 0

Views

Author

Alois P. Heinz, May 22 2013

Keywords

Comments

See A186373 for the definition of strong fixed blocks.

Crossrefs

Column k=1 of A186373.

Programs

  • Maple
    b:= proc(n) b(n):= -`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end:
    a:= n-> add(b(i)*add(b(j), j=0..n-i-1), i=0..n-1):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 25; A052186zero = Rest[CoefficientList[Assuming[Element[x, Reals], Series[-1/(ExpIntegralEi[1/x]/E^(1/x) + 1), {x, 0, nmax+1}]], x]]; suma = ConstantArray[0, nmax+1]; s = 0; Do[s = s + A052186zero[[j+1]]; suma[[j+1]] = s, {j, 0, nmax}]; Flatten[{0, Table[Sum[A052186zero[[i+1]]*suma[[n-i]], {i, 0, n-1}], {n, 1, nmax}]}] (* Vaclav Kotesovec, Aug 05 2015, more efficient program for big nmax *)

Formula

a(n) = Sum_{1<=i<=j<=n} A052186(i-1) * A052186(n-j).
a(n) = Sum_{i=0..n-1} A052186(i) * Sum_{j=0..n-i-1} A052186(j).
a(n) ~ 2 * (n-1)! * (1 - 1/n + 2/n^3 + 11/n^4 + 97/n^5 + 1105/n^6 + 13905/n^7 + 189633/n^8 + 2803873/n^9 + 44875599/n^10), for coefficients see A260957. - Vaclav Kotesovec, Aug 29 2014, extended Aug 05 2015