cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226023 A142705 (numerators of 1/4-1/(4n^2)) sorted to natural order.

Original entry on oeis.org

0, 2, 3, 6, 12, 15, 20, 30, 35, 42, 56, 63, 72, 90, 99, 110, 132, 143, 156, 182, 195, 210, 240, 255, 272, 306, 323, 342, 380, 399, 420, 462, 483, 506, 552, 575, 600, 650, 675, 702, 756, 783, 812, 870, 899
Offset: 0

Views

Author

Paul Curtz, May 23 2013

Keywords

Comments

A198442(n) without indices 4*n+2.
a(n)/A130823(n+1) = 0, 2,3,2, 4,5,4, 6,7,6, 8,9,8, ... (equal to A133310+1, after 0; see also A008611).
-1, 0, 2, 3, is divisible by 1 (for a(-1)=-1),
3, 6, 12, 15, 3,
15, 20, 30, 35 5,
35, 42, 56, 63 7,
63, 72, 90, 99 9,
99, 110, 132, 143, 11, etc.
First column: A000466(n),
second column: A002943(n),
third column: A002939(n+1),
fourth column: A000466(n+1).
a(n) is also the numerator of 1/4-1/(4*n+2)^2: 0/1, 2/9, 3/16, 6/25, 12/49, 15/64, 20/81, 30/121, 35/144, 42/169, 56/225,...
The n-th denominator is equal to 4*a(n) + A146325(n+2).
Note that the differences of a(n-1): 1, 2, 1, 3, 6, 3, 5, 10, 5, 7, 14, 7, 9, 18, 9, 11, 22,... (from A043547 by pairs and 2*n+1) has the same recurrence.
(Of course every sequence which obeys a linear recurrence with constant coefficients has first differences that obey the same linear recurrence. - R. J. Mathar, Jun 14 2013)

Crossrefs

Trisections: A002939, A000466, A002943.

Programs

  • Maple
    A226023 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[0,2,3,6,12,15,20]) ;
        else
            procname(n-1)+2*procname(n-3)-2*procname(n-4)-procname(n-6)+procname(n-7) ;
        end if;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    A226023[n_]:=Floor[(2n+1)/3]Floor[(2n+5)/3];
    Array[A226023,100,0] (* Paolo Xausa, Dec 05 2023 *)

Formula

a(n) = floor( (2*n + 1)/3 ) * floor( (2*n + 5)/3 ) = A004396(n) * A004396(n+2).
Recurrences: a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7).
a(n+15) - a(n) = 10*A042968(n+8).
a(n+1) - a(n-2) = 2*A042968(n) with a(-2)=0, a(-1)=-1.
G.f.: x*(2+x+3*x^2+2*x^3+x^4-x^5)/((1-x)^3 * (1+x+x^2)^2). [Ralf Stephan, May 24 2013]