A226096 Squares with doubled (4*n+2)^2.
1, 4, 4, 9, 16, 25, 36, 36, 49, 64, 81, 100, 100, 121, 144, 169, 196, 196, 225, 256, 289, 324, 324, 361, 400, 441, 484, 484, 529, 576, 625, 676, 676, 729, 784, 841, 900, 900, 961, 1024, 1089, 1156, 1156, 1225, 1296, 1369
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
Programs
-
Mathematica
MapIndexed[ If [Mod[First[#2], 4] == 2, Sequence @@ {#1, #1}, #1] &, Range[40]]^2 (* Jean-François Alcover, May 28 2013 *)
Formula
a(n+5) - a(n) = 8*A090223(n+4).
a(n) = 1 followed by (A090223(n) + 2)^2.
a(n) = 3*a(n-5) -3*a(n-10) +a(n-15).
G.f.: (x^9 + 3*x^8 + 5*x^6 + 7*x^5 + 7*x^4 + 5*x^3 + 3*x + 1)/((1 - x)*(1 - x^5)^2). [Ralf Stephan, May 30 2013]
a(n) = a(n-1) +2*a(n-5) -2*a(n-6) -a(n-10) +a(n-11). [Bruno Berselli, May 30 2013]
a(n) = (24*(16*floor(n/5)^2 + 8*floor(n/5) + 1) - (11 + 24*floor(n/5))*(n - 5*floor(n/5))^4 + 2*(49 + 104*floor(n/5))*(n - 5*floor(n/5))^3 - 23*(11 + 24*floor(n/5))*(n - 5*floor(n/5))^2 + 2*(119 + 280*floor(n/5))*(n - 5*floor(n/5)))/24. - Luce ETIENNE, May 08 2017
Comments