cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226203 a(5n) = a(5n+3) = a(5n+4) = 2n+1, a(5n+1) = 2n-3, a(5n+2) = 2n-1.

Original entry on oeis.org

1, -3, -1, 1, 1, 3, -1, 1, 3, 3, 5, 1, 3, 5, 5, 7, 3, 5, 7, 7, 9, 5, 7, 9, 9, 11, 7, 9, 11, 11, 13, 9, 11, 13, 13, 15, 11, 13, 15, 15, 17, 13, 15, 17, 17, 19, 15, 17, 19, 19, 21, 17, 19, 21, 21, 23, 19, 21, 23, 23, 25, 21, 23, 25, 25
Offset: 0

Views

Author

Paul Curtz, May 31 2013

Keywords

Comments

Given the numerators of A225948/A226008 ordered according to A226096: 0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35,... = t(n), then (a(n) + t(n)/a(n))^2 = A226096(n).
First six differences (of period 5):
...-4, 2, 2, 0, 2, -4, 2, 2, 0, 2, ...
....6, 0, -2, 2, -6, 6, 0, -2, 2, -6, ...
...-6, -2, 4, -8, 12, -6, -2, 4, -8, 12, ...
....4, 6, -12, 20, -18, 4, 6, -12, 20, -18, ...
....2, -18, 32, -38, 22, 2, -18, 32, -38, 22, ...
..-20, 50, -70, 60, -20, -20, 50, -70, 60, -20, ...

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a226203 n = a226203_list !! n
    a226203_list = concat $ transpose
                   [[1, 3 ..], [-3, -1 ..], [-1, 1 ..], [1, 3 ..], [1, 3 ..]]
    -- Reinhard Zumkeller, Jun 02 2013
  • Mathematica
    a[n_] := 2 Quotient[n, 5] + Switch[Mod[n, 5], 0, 1, 1, -3, 2, -1, 3, 1, 4, 1]; Table[a[n], {n, 0, 64}] (* Jean-François Alcover, Jun 22 2017 *)

Formula

a(n+5) = a(n) + 2.
G.f.: (1-4*x+2*x^2+2*x^3+x^5)/((1-x)^2*(1+x+x^2+x^3+x^4)). [Bruno Berselli, Jun 01 2013]
a(n) = a(n-1)+a(n-5)-a(n-6) with a(0)=a(3)=a(4)=1, a(1)=-3, a(2)=-1, a(5)=3. [Bruno Berselli, Jun 01 2013]

Extensions

Edited by Bruno Berselli, Jun 01 2013

A226379 a(5n) = 2*n*(2*n+1), a(5n+1) = (2*n-3)*(2*n+5), a(5n+2) = (2*n-1)*(2*n+3), a(5n+3) = (2*n+2)*(2*n+1), a(5n+4) = (2*n+1)*(2*n+3).

Original entry on oeis.org

0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35, 42, 33, 45, 56, 63, 72, 65, 77, 90, 99, 110, 105, 117, 132, 143, 156, 153, 165, 182, 195, 210, 209, 221, 240, 255, 272, 273, 285, 306, 323, 342, 345, 357, 380, 399, 420, 425, 437
Offset: 0

Views

Author

Paul Curtz, Jun 05 2013

Keywords

Comments

The sequence is the fifth row of the following array:
0, 6, 20, 42, 72, 110, 156, 210, 272, ... A002943
0, 3, 6, 15, 20, 35, 42, 63, 72, ... bisections A002943, A000466
0, 2, 3, 6, 12, 15, 20, 30, 35, ... A226023 (trisections A002943, A000466, A002439)
0, -3, 2, 3, 6, 5, 12, 15, 20, ... A214297 (quadrisections A078371)
0, -15, -3, 2, 3, 6, -7, 5, 12, ... a(n)
0, -63, -15, -3, 2, 3, 6, -55, -7, ...
The principle of construction is that (i) the lower left triangular portion has constant values down the diagonals (6, 3, 2, -3, -15, ...), defined from row 4 on by the negated values of A024036. (ii) The extension along the rows is defined by maintaining bisections, trisections, quadrisections etc of the form (2*n+x)*(2*n+y) with some constants x and y. In the fifth line this needs the quintisections shown in the NAME.
Each row in the array has the subsequences of the previous row plus another subsequence of the format (2*n+1)*(2*n+y) shuffled in; the first A002943, the second also A000466, the third also A002439, the fourth also A078371, and the fifth (2*n+3)*(2*n-5).
Only the first three rows are monotonically increasing everywhere.
a(n) is divisible by A226203(n).
Numerators of: 0, -15/4, -3/4, 2/9, 3/16, 6/25, -7/36, 5/36, 12/49, 15/64, 20/81, ... = a(n)/A226096(n). A permutation of A225948(n+1)/A226008(n+1).
Is the sequence increasing monotonically from 221 on?

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) )); // G. C. Greubel, Mar 23 2024
    
  • Mathematica
    CoefficientList[Series[x*(15 - 12*x - 5*x^2 - x^3 - 3*x^4 - 17*x^5 + 12*x^6 + 3*x^7 - x^8 + x^9)/((x^4 + x^3 + x^2 + x + 1)^2*(x - 1)^3), {x, 0, 80}], x] (* Wesley Ivan Hurt, Oct 03 2017 *)
  • SageMath
    def A226379_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) ).list()
    A226379_list(50) # G. C. Greubel, Mar 23 2024

Formula

4*a(n) = A226096(n) - period 5: repeat [1, 64, 16, 1, 4].
G.f.: x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9) / ( (x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). - R. J. Mathar, Jun 13 2013
a(n) = a(n-1)+2*a(n-5)-2*a(n-6)-a(n-10)+a(n-11) for n > 10. - Wesley Ivan Hurt, Oct 03 2017
Showing 1-2 of 2 results.