A226031 Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 4, 16, 36, 64, 100, ... 0, 22, 161, 525, 1222, 2360, ... 0, 130, 1716, 8086, 24616, 58730, ... 0, 791, 18832, 128248, 510664, 1505205, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1.
A(n,k) = A071921(n,k*n).