cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226031 Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
Offset: 0

Views

Author

Alois P. Heinz, May 23 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,     1,      1,      1,       1, ...
  0,   1,     2,      3,      4,       5, ...
  0,   4,    16,     36,     64,     100, ...
  0,  22,   161,    525,   1222,    2360, ...
  0, 130,  1716,   8086,  24616,   58730, ...
  0, 791, 18832, 128248, 510664, 1505205, ...
		

Crossrefs

Columns k=0-2 give: A000007, A088536, A226012.
Rows n=0-2 give: A000012, A001477, A016742.
Main diagonal gives: A227402.
Cf. A071920.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1.
A(n,k) = A071921(n,k*n).