cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226034 Expansion of f(-x)^6 / (chi(x) * phi(-x)^6) in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 11, 73, 368, 1552, 5755, 19337, 60054, 174801, 481760, 1266992, 3198963, 7791921, 18382187, 42139440, 94126547, 205343040, 438390320, 917501570, 1885269635, 3808353889, 7571955531, 14833349529, 28657374307, 54646711136, 102932171227, 191644299945
Offset: 0

Views

Author

Michael Somos, May 28 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 11*x + 73*x^2 + 368*x^3 + 1552*x^4 + 5755*x^5 + 19337*x^6 + 60054*x^7 + ...
q^19 + 11*q^43 + 73*q^67 + 368*q^91 + 1552*q^115 + 5755*q^139 + 19337*q^163 + ...
		

Crossrefs

Cf. A001935.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k)^4 * (1-x^(3*k))^6 * (1-x^(4*k)) / (1-x^k)^7,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-19/24)* eta[q^2]^4*eta[q^3]^6*eta[q^4]/eta[q]^11, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 15 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^6 * eta(x^4 + A) / eta(x + A)^11, n))}

Formula

Expansion of q^(-19/24) * eta(q^2)^4 * eta(q^3)^6 * eta(q^4) / eta(q)^11 in powers of q.
a(n) = 1/12 * A001935(9*n + 7).
a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4) * 3^(5/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015