cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226036 Let abc... be the decimal expansion of n. a(n) is the number of iterations of the map n -> f(n) needed to reach the last number of the cycle, where f(n) = a^a + b^b + c^c + ...

Original entry on oeis.org

1, 0, 58, 66, 57, 104, 46, 70, 144, 98, 59, 59, 105, 70, 66, 107, 102, 46, 150, 124, 105, 105, 145, 71, 146, 47, 145, 65, 69, 115, 70, 70, 71, 152, 142, 104, 106, 106, 103, 44, 66, 66, 146, 142, 189, 151, 50, 62, 141, 101, 107, 107, 47, 104, 151, 102, 186, 76
Offset: 0

Views

Author

Michel Lagneau, May 24 2013

Keywords

Comments

Additive persistence with powers of decimal digits: number of steps for "add digit(i) ^ digit(i)" operation to stabilize when started at n.
Or number of distinct values obtained by iterating n -> A045503(n).
We take 0^0 = 1.
It is conjectured that the trajectory for every number converges to a single number. The growth of a(n) is very slow; for example, a(457) = 211, a(10337) = 213, a(16669) = 214, ...

Examples

			a(0) = 1 because 0 -> 0^0 = 1 with 1 iteration;
a(1) = 0 because 1 -> 1^1 => 0 iteration;
a(354) = 4 because:
354 -> 3^3 + 5^5 + 4^4 = 3408;
3408 -> 3^3 + 4^4 + 0^0 + 8^8 = 16777500;
16777500 -> 1^1 + 6^6 + 7^7 + 7^7 + 7^7 + 5^5 + 0^0 + 0^0 = 2520413;
2520413 -> 2^2 + 5^5 + 2^2 + 0^0 + 4^4 + 1^1 + 3^3 = 3418 and
3418 is the last number of the cycle because 3418 -> 16777500 is already in the trajectory. We obtain 4 iterations: 354 -> 3408 -> 16777500 -> 2520413 -> 3418.
		

Crossrefs

Programs

  • Maple
    A000312:=proc(n)
        if n = 0 then 1;
        else add(d^d, d=convert(n, base, 10)) ;
        end if;
    end proc:
    A226036:= proc(n)
        local traj , c;
        traj := n ;
        c := [n] ;
        while true do
           traj := A000312(traj) ;
           if member(traj, c) then
           return nops(c)-1 ;
           end if;
           c := [op(c), traj] ;
        end do:
    end proc:
    seq(A226036(n), n=0..100) ;
  • Mathematica
    Unprotect[Power]; 0^0 = 1; Protect[Power]; f[n_] := (cnt++; id = IntegerDigits[n]; Total[id^id]); a[n_] := (cnt = 0; NestWhile[f, n, UnsameQ, All]; cnt-1); Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 24 2013 *)