A226048 Irregular triangle read by rows: T(n,k) is the number of binary pattern classes in the (2,n)-rectangular grid with k '1's and (2n-k) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 6, 6, 6, 2, 1, 1, 2, 10, 14, 22, 14, 10, 2, 1, 1, 3, 15, 32, 60, 66, 60, 32, 15, 3, 1, 1, 3, 21, 55, 135, 198, 246, 198, 135, 55, 21, 3, 1, 1, 4, 28, 94, 266, 508, 777, 868, 777, 508, 266, 94, 28, 4, 1, 1, 4, 36
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 1 1 1 1 2 1 1 3 1 1 3 1 2 6 6 6 2 1 4 1 2 10 14 22 14 10 2 1 5 1 3 15 32 60 66 60 32 15 3 1 6 1 3 21 55 135 198 246 198 135 55 21 3 1 7 1 4 28 94 266 508 777 868 777 508 266 94 28 4 1 8 1 4 36 140... ... The length of row n is 2*n+1, so n>= floor((k+1)/2).
Links
- Yosu Yurramendi and María Merino, Rows 0..40 of triangle, flattened
Programs
-
Maple
A226048 := proc(n,k) if type(k,'even') then binomial(2*n,k) +3*binomial(n,k/2) ; else binomial(2*n,k) +(1-(-1)^n)*binomial(n-1,(k-1)/2) ; end if ; %/4 ; end proc: seq(seq(A226048(n,k),k=0..2*n),n=0..8) ; # R. J. Mathar, Jun 07 2020
-
Mathematica
T[n_, k_] := If[EvenQ[k], Binomial[2n, k] + 3 Binomial[n, k/2], Binomial[2n, k] + (1-(-1)^n) Binomial[n-1, (k-1)/2]]/4; Table[T[n, k], {n, 0, 8}, { k, 0, 2n}] // Flatten (* Jean-François Alcover, May 05 2023 *)
Formula
If k even, 4*T(n,k) = binomial(2*n,k) +3*binomial(n,k/2). - Yosu Yurramendi, María Merino, Aug 25 2013
If k odd, 4*T(n,k) = 4*T(n,k) = binomial(2*n,k) +(1-(-1)^n)*binomial(n-1,(k-1)/2). - Yosu Yurramendi, María Merino, Aug 25 2013 [corrected by Christian Barrientos, Jun 14 2018]
Extensions
Definition corrected by María Merino, May 19 2017
Comments