A347343 Positive integers k such that k with the last digit repeated is prime.
1, 19, 21, 23, 27, 31, 43, 49, 57, 59, 67, 73, 81, 87, 91, 97, 103, 127, 139, 143, 149, 151, 169, 173, 177, 181, 187, 193, 199, 201, 209, 211, 231, 233, 237, 239, 241, 247, 263, 267, 269, 271, 277, 283, 299, 301, 329, 343, 349, 351, 353, 367, 373, 383, 387
Offset: 1
Examples
21 is a term because 211 is prime.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
upto=500;Select[Range[1,upto,2],PrimeQ[FromDigits[Join[d=IntegerDigits[#],{Last[d]}]]]&]
-
PARI
forprime(p=9,1e4, if(p%100%11==0, print1(p\10", "))) \\ Charles R Greathouse IV, Aug 27 2021
-
Python
from sympy import isprime def ok(n): return isprime(10*n + n%10) print(list(filter(ok, range(388)))) # Michael S. Branicky, Aug 28 2021
Formula
a(n) ~ n log n by the prime number theorem in arithmetic progressions. (These numbers are the primes mod 11, 33, 77, or 99 mod 100 with their last digit removed.) - Charles R Greathouse IV, Aug 27 2021
Comments