cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226106 G.f.: exp( Sum_{n>=1} A068963(n)*x^n/n ) where A068963(n) = Sum_{d|n} phi(d^3).

Original entry on oeis.org

1, 1, 3, 9, 20, 52, 105, 253, 536, 1142, 2421, 4999, 10278, 20686, 41512, 81984, 161029, 312681, 603070, 1153284, 2189331, 4129537, 7733317, 14399693, 26644337, 49034811, 89741600, 163411148, 296074694, 533909026, 958416113, 1712893825, 3048468607, 5403248469, 9539609984
Offset: 0

Views

Author

Paul D. Hanna, May 26 2013

Keywords

Comments

Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 37*x^4/4 + 101*x^5/5 + 95*x^6/6 + 295*x^7/7 + 293*x^8/8 + 505*x^9/9 +...+ A068963(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m,d,eulerphi(d^3))*x^m/m)+x*O(x^n)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018