A226134 The partial digital sums of n from left to right mod 10 give the digits of a(n).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 22, 23, 24, 25, 26, 27, 28, 29, 20, 21, 33, 34, 35, 36, 37, 38, 39, 30, 31, 32, 44, 45, 46, 47, 48, 49, 40, 41, 42, 43, 55, 56, 57, 58, 59, 50, 51, 52, 53, 54, 66, 67, 68, 69, 60, 61, 62, 63, 64, 65, 77, 78, 79, 70, 71, 72, 73, 74, 75, 76, 88, 89, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 0
Examples
1 = 1 mod 10. 1+9 = 0 mod 10. 1+9+5 = 5 mod 10. 1+9+5+4 = 9 mod 10. Hence, a(1954)=1059.
Links
Programs
-
Haskell
a226134 = foldl (\v d -> 10*v+d) 0 . scanl1 (\d x -> (x+d) `mod` 10) . map (read . return) . show :: Int -> Int -- Reinhard Zumkeller, Jun 03 2013
-
Mathematica
Table[With[{idn=IntegerDigits[n]},FromDigits[Table[Mod[Total[Take[idn,i]],10],{i,Length[idn]}]]],{n,0,90}] (* Harvey P. Dale, Mar 08 2015 *)
-
PARI
a(n)=my(b); if(n<10, return(n), b=a(n\10); return(10*b + (b+n)%10))
-
PARI
a(n) = my(v=digits(n)); for(i=2,#v, v[i]=(v[i]+v[i-1])%10); fromdigits(v); \\ Kevin Ryde, May 15 2020
Comments