cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226134 The partial digital sums of n from left to right mod 10 give the digits of a(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 22, 23, 24, 25, 26, 27, 28, 29, 20, 21, 33, 34, 35, 36, 37, 38, 39, 30, 31, 32, 44, 45, 46, 47, 48, 49, 40, 41, 42, 43, 55, 56, 57, 58, 59, 50, 51, 52, 53, 54, 66, 67, 68, 69, 60, 61, 62, 63, 64, 65, 77, 78, 79, 70, 71, 72, 73, 74, 75, 76, 88, 89, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 0

Views

Author

Paul Tek, May 27 2013

Keywords

Comments

Inverse permutation to A098488.
Analogous to A006068 for the decimal base.
For any n, the sequence n, a(n), a(a(n)), a(a(a(n))),... is periodic.
The periods encountered between 0 and 10^6 are:
- 1 (n=0),
- 10 (n=10),
- 5 (n=20),
- 2 (n=50),
- 20 (n=100),
- 4 (n=500),
- 40 (n=10000),
- 8 (n=50000),
- 200 (n=100000),
- 25 (n=200000),
- 50 (n=200010),
- 100 (n=200100).

Examples

			1       = 1 mod 10.
1+9     = 0 mod 10.
1+9+5   = 5 mod 10.
1+9+5+4 = 9 mod 10.
Hence, a(1954)=1059.
		

Crossrefs

Programs

  • Haskell
    a226134 = foldl (\v d -> 10*v+d) 0 . scanl1 (\d x -> (x+d) `mod` 10) .
              map (read . return) . show :: Int -> Int
    -- Reinhard Zumkeller, Jun 03 2013
  • Mathematica
    Table[With[{idn=IntegerDigits[n]},FromDigits[Table[Mod[Total[Take[idn,i]],10],{i,Length[idn]}]]],{n,0,90}] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=my(b); if(n<10, return(n), b=a(n\10); return(10*b + (b+n)%10))
    
  • PARI
    a(n) = my(v=digits(n)); for(i=2,#v, v[i]=(v[i]+v[i-1])%10); fromdigits(v); \\ Kevin Ryde, May 15 2020