cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226141 Sum of the squared parts of the partitions of n into exactly two parts.

Original entry on oeis.org

0, 2, 5, 18, 30, 64, 91, 156, 204, 310, 385, 542, 650, 868, 1015, 1304, 1496, 1866, 2109, 2570, 2870, 3432, 3795, 4468, 4900, 5694, 6201, 7126, 7714, 8780, 9455, 10672, 11440, 12818, 13685, 15234, 16206, 17936, 19019, 20940, 22140, 24262, 25585, 27918, 29370, 31924, 33511
Offset: 1

Views

Author

Wesley Ivan Hurt, May 27 2013

Keywords

Examples

			a(5) = 30; 5 has exactly 2 partitions into two parts, (4,1) and (3,2). Squaring the parts and adding, we get: 1^2 + 2^2 + 3^2 + 4^2 = 30.
		

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), this sequence (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [n*(8*n^2 - 9*n + 4)/24 + (-1)^n*n^2/8 : n in [1..80]]; // Wesley Ivan Hurt, Jun 22 2024
  • Maple
    a:=n->sum(i^2 + (n-i)^2, i=1..floor(n/2)); seq((a(k), k=1..40);
  • Mathematica
    Array[Sum[i^2 + (# - i)^2, {i, Floor[#/2]}] &, 39] (* Michael De Vlieger, Jan 23 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,2,5,18,30,64,91},50] (* Harvey P. Dale, Jul 23 2019 *)

Formula

a(n) = Sum_{i=1..floor(n/2)} (i^2 + (n-i)^2).
a(n) = n*(8*n^2 - 9*n + 4)/24 + (-1)^n*n^2/8. - Giovanni Resta, May 29 2013
G.f.: x^2*(2+3*x+7*x^2+3*x^3+x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Jun 07 2013
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7). - Wesley Ivan Hurt, Jun 22 2024
a(n) = A000330(n) - A308422(n). - Wesley Ivan Hurt, Jul 16 2025