cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226144 Primes p that become composite when any nonzero decimal digit is appended or deleted on the right or left of p.

Original entry on oeis.org

1301, 3989, 4931, 5387, 6803, 7451, 7703, 7753, 10303, 10657, 10723, 11971, 12119, 12329, 12541, 12653, 12907, 12983, 13693, 13729, 13789, 14207, 14251, 14303, 14411, 14821, 15131, 15217, 15383, 15619, 15629, 15913, 16231, 16487, 17137, 17627, 17807, 17929
Offset: 1

Views

Author

W. Edwin Clark, May 27 2013

Keywords

Comments

Among the first million primes, 99272 of them are of this type. This sequence was suggested by Carlos Rivera's Puzzle 690 (see link below).

Examples

			1301 is prime, but the numbers 301, 130, x1301, 1301x are composite for any x in {1,2,3,4,5,6,7,8,9}.
		

Crossrefs

Cf. A050249 (weakly prime numbers: changing any one decimal digit always produces a composite number).

Programs

  • Maple
    with(StringTools):
    LL:=Explode("123456789"):
    IsIsolated:=proc(p)
    global LL;
    local L,x,q,i,t;
    L:=Explode(convert(p,string));
       for x in LL do
          t:=[x,seq(L[i],i=1..nops(L))];
          q:=parse(Implode(t));
          if isprime(q) then return false; fi;
          t:=[seq(L[i],i=1..nops(L)),x];
          q:=parse(Implode(t));
          if isprime(q) then return false; fi;
       od:
       t:=[seq(L[i],i=1..nops(L)-1)];
       if t <> [] then
          q:=parse(Implode(t));
          if isprime(q)  then return false; fi;
       fi;
       t:=[seq(L[i],i=2..nops(L))];
       if t <> [] then
          q:=parse(Implode(t));
          if isprime(q)  then return false; fi;
       fi;
    return true;
    end proc:
    a:=NULL;
    for i from 1 to 20000 do
    p:=ithprime(i);
    if IsIsolated(p) then a:=a,p; fi;
    od:
    a;  # W. Edwin Clark, May 28 2013
  • Mathematica
    noPrimesQ[p_] := Module[{d = IntegerDigits[p],  tens = 10^Ceiling[Log[10, p]]}, ! PrimeQ[FromDigits[Rest[d]]] && ! PrimeQ[FromDigits[Most[d]]] && ! PrimeQ[10*p + 1] && ! PrimeQ[10*p + 3] && ! PrimeQ[10*p + 7] && ! PrimeQ[10*p + 9] && ! PrimeQ[1*tens + p] && ! PrimeQ[2*tens + p] && ! PrimeQ[3*tens + p] && ! PrimeQ[4*tens + p] && ! PrimeQ[5*tens + p] && ! PrimeQ[6*tens + p] && ! PrimeQ[7*tens + p] && ! PrimeQ[8*tens + p] && ! PrimeQ[9*tens + p]]; t = {}; Do[If[noPrimesQ[p], AppendTo[t, p]], {p, Prime[Range[PrimePi[20000]]]}]; t (* T. D. Noe, May 28 2013 *)
    pbcQ[p_]:=Module[{idp=IntegerDigits[p],lm1,rm1,lft,rt},lm1 = FromDigits[ Most[ idp]];rm1=FromDigits[Rest[idp]];lft= Table[ l*10^Length[idp]+p,{l,9}]; rt=Table[10*p+r,{r,9}];AllTrue[ Flatten[ Join[ {lm1,rm1,lft,rt}]],CompositeQ]]; Select[ Prime[ Range[ 2100]],pbcQ] (* Harvey P. Dale, Dec 20 2021 *)