A226144 Primes p that become composite when any nonzero decimal digit is appended or deleted on the right or left of p.
1301, 3989, 4931, 5387, 6803, 7451, 7703, 7753, 10303, 10657, 10723, 11971, 12119, 12329, 12541, 12653, 12907, 12983, 13693, 13729, 13789, 14207, 14251, 14303, 14411, 14821, 15131, 15217, 15383, 15619, 15629, 15913, 16231, 16487, 17137, 17627, 17807, 17929
Offset: 1
Examples
1301 is prime, but the numbers 301, 130, x1301, 1301x are composite for any x in {1,2,3,4,5,6,7,8,9}.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Puzzle 690 Unreachable Primes
Crossrefs
Cf. A050249 (weakly prime numbers: changing any one decimal digit always produces a composite number).
Programs
-
Maple
with(StringTools): LL:=Explode("123456789"): IsIsolated:=proc(p) global LL; local L,x,q,i,t; L:=Explode(convert(p,string)); for x in LL do t:=[x,seq(L[i],i=1..nops(L))]; q:=parse(Implode(t)); if isprime(q) then return false; fi; t:=[seq(L[i],i=1..nops(L)),x]; q:=parse(Implode(t)); if isprime(q) then return false; fi; od: t:=[seq(L[i],i=1..nops(L)-1)]; if t <> [] then q:=parse(Implode(t)); if isprime(q) then return false; fi; fi; t:=[seq(L[i],i=2..nops(L))]; if t <> [] then q:=parse(Implode(t)); if isprime(q) then return false; fi; fi; return true; end proc: a:=NULL; for i from 1 to 20000 do p:=ithprime(i); if IsIsolated(p) then a:=a,p; fi; od: a; # W. Edwin Clark, May 28 2013
-
Mathematica
noPrimesQ[p_] := Module[{d = IntegerDigits[p], tens = 10^Ceiling[Log[10, p]]}, ! PrimeQ[FromDigits[Rest[d]]] && ! PrimeQ[FromDigits[Most[d]]] && ! PrimeQ[10*p + 1] && ! PrimeQ[10*p + 3] && ! PrimeQ[10*p + 7] && ! PrimeQ[10*p + 9] && ! PrimeQ[1*tens + p] && ! PrimeQ[2*tens + p] && ! PrimeQ[3*tens + p] && ! PrimeQ[4*tens + p] && ! PrimeQ[5*tens + p] && ! PrimeQ[6*tens + p] && ! PrimeQ[7*tens + p] && ! PrimeQ[8*tens + p] && ! PrimeQ[9*tens + p]]; t = {}; Do[If[noPrimesQ[p], AppendTo[t, p]], {p, Prime[Range[PrimePi[20000]]]}]; t (* T. D. Noe, May 28 2013 *) pbcQ[p_]:=Module[{idp=IntegerDigits[p],lm1,rm1,lft,rt},lm1 = FromDigits[ Most[ idp]];rm1=FromDigits[Rest[idp]];lft= Table[ l*10^Length[idp]+p,{l,9}]; rt=Table[10*p+r,{r,9}];AllTrue[ Flatten[ Join[ {lm1,rm1,lft,rt}]],CompositeQ]]; Select[ Prime[ Range[ 2100]],pbcQ] (* Harvey P. Dale, Dec 20 2021 *)
Comments