A226181 Primes p such that p-1 divided by the period of the binary expansion of 1/p equals 2^x for some nonnegative integer x.
3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 113, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 233, 239, 257, 263, 269, 271, 281, 293, 311, 313, 317, 337, 347, 349
Offset: 1
Examples
(41-1)/20 = 2. 20 is the period of the binary representation of 1/n, the odd part of 2 is 1.
Links
- Lear Young, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[2, 100]], # == 2^IntegerExponent[#, 2] &[(# - 1)/MultiplicativeOrder[2, #]] &] (* Peter J. C. Moses, May 28 2014 *)
-
PARI
is(n) = { m = valuation(n+1,2); k=(n+1)>>m; if(k!=1, for(i=0,(n-1)>>1, l=valuation(k+n,2); k=(k+n)>>l; m+=l;if(k==1,break))); ((n-1)/m)>>valuation((n-1)/m, 2)==1 \\ m equals znorder(Mod(2,n)) } forstep(i=3,1e3,2,if(is(i),print1(i, ", "))) \\ Lear Young May 30 2013
-
PARI
forstep(i=1,1e3,2,j = (i-1)/znorder(Mod(2,i));if(j>>valuation(j, 2)==1,print1(i, ", "))) \\ Lear Young May 31 2013
Comments