cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235467 Primes whose base-4 representation also is the base-3 representation of a prime.

Original entry on oeis.org

2, 89, 137, 149, 281, 293, 353, 389, 409, 421, 593, 613, 661, 1097, 1109, 1289, 1301, 1321, 1381, 1409, 1601, 1609, 1669, 2069, 2129, 2309, 2377, 2389, 2729, 4133, 4229, 4373, 4441, 4513, 4673, 5153
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
This is a subsequence of A002144, A002313, A003655, A050150, A062090, A141293, A175768, A192592, A226181 (conjectural).

Examples

			E.g., 89 = 1121_4 and 1121_3 = 43 both are prime.
		

Crossrefs

Cf. A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    b4b3Q[n_]:=Module[{b4=IntegerDigits[n,4]},Max[b4]<3&&PrimeQ[ FromDigits[ b4,3]]]; Select[Prime[Range[700]],b4b3Q] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    is(p,b=3,c=4)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,1e3,is(p,4,3)&&print1(vector(#d=digits(p,3),i,4^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,3,4)

A243050 Composite integers n such that n-1 divided by the binary period of 1/n (=A007733(n)) equals an integral power of 2.

Original entry on oeis.org

12801, 348161, 3225601, 104988673, 4294967297, 7816642561, 43796171521, 49413980161, 54745942917121, 51125767490519041, 18314818035992494081, 18446744073709551617
Offset: 1

Views

Author

Max Alekseyev, May 29 2014

Keywords

Comments

All terms are odd. If even n belongs to this sequence, then n-1 is odd and thus (n-1)/A007733(n) is also odd and thus must be equal to 1. On the other hand, for even n, A007733(n) < n/2 <= n-1, i.e., (n-1)/A007733(n) > 1, a contradiction.
Subsequence of A001567.
Contains all composite Fermat numbers A000215(k) = 2^(2^k)+1 (which are composite for 5<=k<=32 and conjecturally for any k>=5). In particular, a(5) = A000215(5), a(12) = A000215(6), and a(13) <= A000215(7) = 2^128+1.
Pseudoprimes n such that (n-1)/ord_{n}(2) = 2^k for some k, where ord_{n}(2) = A002326((n-1)/2) is the multiplicative order of 2 mod n. Composite numbers n such that Od(ord_{n}(2)) = Od(n-1), where ord_{n}(2) as above and Od(m) = A000265(m) is the odd part of m. Note that if Od(ord_{n}(2)) = Od(n-1), then ord_{n}(2)|(n-1). - Thomas Ordowski, Mar 13 2019

Examples

			n = a(6) = 7816642561 = 2^15 * 238545 + 1 is the first term, which is not Proth number (A080075). The binary period of 1/n is 954180 = (n-1)/2^13.
		

Crossrefs

Extensions

a(1)-a(3) from Lear Young; a(4)-a(5),a(9)-a(12) from Max Alekseyev; a(6),a(8) from Peter Kosinar; a(7) from Chris Boyd, May 29 2014.
Showing 1-2 of 2 results.