A226222 a(1) = a(2) = a(3) = 1, a(n) = a(n-2-a(n-2)) + a(n-1-a(n-3)) for n>3.
1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 7, 7, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 16, 16, 16, 17, 18, 18, 18, 18, 19, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25, 25, 25, 26, 26, 27, 27, 28, 29, 30, 30, 30, 31, 32, 32, 32, 32, 33, 35, 35
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Hofstadter's Q-Sequence
- Wikipedia, Hofstadter sequence
- Index entries for Hofstadter-type sequences
Programs
-
Haskell
a226222 n = a226222_list !! (n-1) a226222_list = 1 : 1 : 1 : zipWith (+) (map a226222 $ zipWith (-) [3..] a226222_list) (map a226222 $ zipWith (-) [2..] $ tail a226222_list) -- Reinhard Zumkeller, May 31 2013
-
Mathematica
a[n_]:= a[n]= If[n<4, 1, a[n-2 -a[n-2]] + a[n-1 -a[n-3]]]; Table[a[n], {n, 80}] (* G. C. Greubel, Mar 28 2022 *)
-
Sage
@CachedFunction def a(n): # A226222 if (n<4): return 1 else: return a(n-2-a(n-2)) + a(n-1-a(n-3)) [a(n) for n in (1..80)] # G. C. Greubel, Mar 28 2022
Formula
a(n) = a(n-2 - a(n-2)) + a(n-1 - a(n-3)), with a(1) = a(2) = a(3) = 1.
Comments