cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226243 Denominators of the probability of success in sultan's dowry problem with n daughters.

Original entry on oeis.org

1, 2, 2, 24, 30, 180, 70, 1120, 840, 8400, 630, 83160, 72072, 1009008, 1081080, 192192, 408408, 7351344, 2217072, 8868288, 203693490, 71131060, 74364290, 4759314560, 14872858000, 77338861600, 72282089880
Offset: 1

Views

Author

Keywords

Examples

			1, 1/2, 1/2, 11/24, 13/30, 77/180, 29/70, 459/1120, ...
		

Crossrefs

Cf. A226242(numerators), A054404.

Programs

  • Mathematica
    G[k_, n_] := G[k, n] = 1/( k + 1) Max[(k + 1)/n, G[k + 1, n]] + k/(k + 1)G[k + 1, n]; G[n_, n_] = 0; Denominator@Table[G[0, n], {n, 1, 20}]
  • PARI
    a(n)={my(g=0); forstep(k=n-1, 0, -1, g = max(1/n, g/(k+1)) + k*g/(k+1)); denominator(g)} \\ Andrew Howroyd, Nov 12 2018

A306480 Numbers k such that A054404(k) is not floor(k/e - 1/(2*e) + 1/2).

Original entry on oeis.org

97, 24586, 14122865, 14437880866, 23075113325617, 53123288947296842, 166496860519928411041, 681661051602157413173890, 3532450008306093939076231361, 22600996284275635202947629995722, 174979114331029936735527491233938577, 1612273088535187752419835130130200398626
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that the optimal threshold in the secretary problem with k candidates is not floor(k/e - 1/(2*e) + 1/2).

Examples

			A054404(97)=35 but floor(97/e - 1/(2e) + 1/2) = 36.
		

Crossrefs

Programs

  • Mathematica
    P[r_, n_] := If[r == 0, 1/n, r/n (PolyGamma[0, n] - PolyGamma[0, r])]
    in[n_] := (n - 1/2)/E + 1/2 - (3E - 1)/2/(2 n + 3E - 1) - 1
    su[n_] := n/E - 1/2/E + 1/2
    A054404[n_] := If[P[Floor[su[n]], n] >= P[Ceiling[in[n]], n], Floor[su[n]], Ceiling[in[n]]]
    lista = Select[Range[25000], ! Floor[su[#]] == Ceiling[in[#]] &];
    IS[n_] := If[Floor[su[n]] == Ceiling[in[n]], False, ! (A054404[n] == Floor[su[n]])]
    Select[lista, IS]

Formula

Empirical observation: a(n) = (2*d(6k+3)+1)/2, where d(m) is the denominator of the truncated continued fraction [a_0;a_1,a_2,...,a_m] of 1/e. - Giovanni Corbelli, Jul 23 2021

Extensions

a(4)-a(12) from Jon E. Schoenfield, Feb 28 2019
Showing 1-2 of 2 results.