cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A226272 Distinct numbers that can be written as u^v, where u and v are not necessarily distinct digits of n in decimal representation, table read by rows.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 0, 1, 1, 1, 2, 4, 1, 3, 27, 1, 4, 256, 1, 5, 3125, 1, 6, 46656, 1, 7, 823543, 1, 8, 16777216, 1, 9, 387420489, 0, 1, 4, 1, 2, 4, 4, 4, 8, 9, 27, 4, 16, 256, 4, 25, 32, 3125, 4, 36, 64, 46656
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2013

Keywords

Comments

Row lengths: A226273;
T(n,k) <= 9^9 = 387420489;
largest term of n-th row = A054055(n)^A054055(n);
row(n) is contained in row(10*n+d), 0 <= d <= 9;
see A226277 for numbers m such that m is contained in m-th row.

Examples

			.   n          row(n)                                    A226273(n)
. ---   ---------------------   -----------------------  ----------
.   0   [1]                     {0^0}                          1
.   1   [1]                     {1^1}                          1
.   2   [4]                     {2^2}                          1
.   3   [27]                    {3^3}                          1
.   4   [256]                   {4^4}                          1
.   5   [3125]                  {5^5}                          1
.   6   [46656]                 {6^6}                          1
.   7   [823543]                {7^7}                          1
.   8   [16777216]              {8^8}                          1
.   9   [387420489]             {9^9}                          1
.  10   [0,1]                   {0^1, 0^0=1^0=1^1}             2
.  11   [1]  = row(1)           {1^1}                          1
.  12   [1,2,4]                 {1^1=1^2, 2^1, 2^2}            3
.  13   [1,3,27]                {1^1=1^3, 3^1, 3^3}            3
.  14   [1,4,256]               {1^1=1^4, 4^1, 4^4}            3
.  15   [1,5,3125]              {1^1=1^5, 5^1, 5^5}            3
.  16   [1,6,46656]             {1^1=1^6, 6^1, 6^6}            3
.  17   [1,7,823543]            {1^1=1^7, 7^1, 7^7}            3
.  18   [1,8,16777216]          {1^1=1^8, 8^1, 8^8}            3
.  19   [1,9,387420489]         {1^1=1^9, 9^1, 9^9}            3
.  20   [0,1,4]                 {0^2, 0^0=2^0, 2^2}            3
.  21   [1,2,4]  = row(12)      {1^1=1^2, 2^1, 2^2}            3
.  22   [4]  = row(2)           {2^2}                          1
.  23   [4,8,9,27]              {2^2, 2^3, 3^2, 3^3}           4
.  24   [4,16,256]              {2^2, 2^4=4^2, 4^4}            3
.  25   [4,25,32,3125]          {2^2, 5^2, 2^5, 5^5}           4
.  26   [4,36,64,46656]         {2^2, 6^6, 2^6, 6^6}           4
.  27   [4,49,128,823543]       {2^2, 7^2, 2^7, 7^7}           4
.  28   [4,64,256,16777216]     {2^2, 8^2, 2^8, 8^8}           4
.  29   [4,81,512,387420489]    {2^2, 9^2, 2^9, 9^9}           4
.  30   [0,1,27]                {0^3, 0^0=3^0, 3^3}            3 .
		

Crossrefs

Cf. A000312.

Programs

  • Haskell
    import Data.List (nub, sort)
    a226272 n k = a226272_tabf !! n !! k
    a226272_row n = sort $ nub [u ^ v | u <- digs, v <- digs]
                    where digs = nub $ map (read . return) $ show n
    a226272_tabf = map a226272_row [0..]
Showing 1-1 of 1 results.