cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226313 Number of commuting 4-tuples of elements from S_n, divided by n!.

Original entry on oeis.org

1, 8, 21, 84, 206, 717, 1810, 5462, 13859, 38497, 96113, 253206, 620480, 1566292, 3770933, 9212041, 21768608, 51795427, 120279052, 279849177, 639379257, 1459282932, 3283758256, 7369471795, 16351101855, 36147590987, 79162129897, 172646751524, 373527250619, 804631686843, 1721283389932, 3666041417241
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2013

Keywords

Comments

Euler transform of A001001.

Crossrefs

Column k=4 of A362826.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; add(d*sigma(d), d=divisors(n)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 06 2015
  • Mathematica
    b[n_] := b[n] = DivisorSum[n, #*DivisorSigma[1, #]&];
    a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSum[j, #*b[#]&]*a[n-j], {j, 1, n}] /n];
    Array[a, 40] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)
    nmax = 40; Rest[CoefficientList[Series[Exp[Sum[Sum[Sum[d*DivisorSigma[1, d], {d, Divisors[k]}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n,i,1)); for(k=1, 2, v=dirmul(v, vector(n,i,i^k))); EulerT(v)} \\ Andrew Howroyd, May 09 2023

Formula

a(n) ~ exp(2^(7/4) * Pi^(3/2) * Zeta(3)^(1/4) * n^(3/4) / (3^(3/2) * 5^(1/4)) - sqrt(5*Zeta(3)*n) / (2^(3/2)*Pi) + (sqrt(Pi) * 5^(1/4) / (2^(15/4) * 3^(3/2) * Zeta(3)^(1/4)) - sqrt(3) * 5^(5/4) * Zeta(3)^(3/4) / (2^(15/4) * Pi^(7/2))) * n^(1/4) - 25*Zeta(3) / (16*Pi^6) + (5 - 2*Zeta(3)) / (192*Pi^2)) * Pi^(1/4) * Zeta(3)^(1/8) / (2^(13/8) * 3^(1/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 26 2018