A226349 Number of functions f:{1,2,...,n} -> {1,2,...,n} such that the 1 and the 2 are in the same component of the functional digraph representation of f.
0, 0, 3, 20, 188, 2280, 33864, 595196, 12081600, 278122032, 7159299200, 203771364324, 6354217539072, 215429796291320, 7889813961243648, 310413633428119500, 13057068314325008384, 584737112800511959104, 27776659696045110558720, 1395009275793285886030772, 73854320834079368232960000
Offset: 0
Keywords
Examples
a(3)=20 because there are 17 connected functions on [3] and (2,1,3), (1,1,3), (2,2,3) where the functions are represented by their values.
Programs
-
Mathematica
nn=18; t=Sum[n^(n-1)x^n/n!, {n,1,nn+2}]; Join[{0,0}, Range[0,nn]! CoefficientList[Series[D[D[Log[1/(1-t)], x], x]/(1-t), {x,0,nn}], x]] a[ n_] := If[ n < 2, 0, With[ {m = n - 2}, With[ {t = 1 + Sum[k^k x^k/k!, {k, m + 2}]}, m! SeriesCoefficient[ D[ Log[ t], {x, 2}] t, {x, 0, m} ]]]] (* Michael Somos, Jun 04 2013 *)
-
PARI
{a(n) = local(A); if( n<2, 0, m = n-2; A = sum( k=0, m+2, k^k * x^k / k!, x^3 * O(x^m)); m! * polcoeff( log(A)'' * A, m))} /* Michael Somos, Jun 04 2013 */