A226351 Number of ways to tile a fixed 3 X n square grid with 1 X 1, 2 X 2, and 1 X 2 tiles.
1, 3, 26, 163, 1125, 7546, 51055, 344525, 2326760, 15709977, 106079739, 716273960, 4836475953, 32657123299, 220509407586, 1488936665619, 10053686907525, 67885102598386, 458377829683919, 3095086053853821, 20898824215523616
Offset: 0
Links
- Andrew Woods, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (4,19,1,-26,1,6).
Crossrefs
Cf. A226348.
Programs
-
Mathematica
LinearRecurrence[{4, 19, 1, -26, 1, 6}, {1, 3, 26, 163, 1125, 7546}, 21] (* T. D. Noe, Jun 04 2013 *)
-
Python
# Depth-first search on 3 rows and n columns # Produces "count" and the list "result[]" # Omit the 2nd-last line if memory runs low n=5; rows=3 count=0; result=[] def f(b, row=0, col=-1): global count for i in range(row, len(b)): for j in range((col+1 if i==row else 0), len(b[0])): if b[i][j]==' ': if i
'+b[i][j+2:]]+b[i+1:], i, j) count+=1 result.append(b) # omit this line f([' '*n]*rows); print(count)
Formula
Recurrence: a(n) = 4*a(n-1)+19*a(n-2)+a(n-3)-26*a(n-4)+a(n-5)+6*a(n-6) for n>5, a(0)=1, a(1)=3, a(2)=26, a(3)=163, a(4)=1125, a(5)=7546.
G.f.: (1-x-5*x^2+x^3+2*x^4)/(1-4*x-19*x^2-x^3+26*x^4-x^5-6*x^6).