cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226351 Number of ways to tile a fixed 3 X n square grid with 1 X 1, 2 X 2, and 1 X 2 tiles.

Original entry on oeis.org

1, 3, 26, 163, 1125, 7546, 51055, 344525, 2326760, 15709977, 106079739, 716273960, 4836475953, 32657123299, 220509407586, 1488936665619, 10053686907525, 67885102598386, 458377829683919, 3095086053853821, 20898824215523616
Offset: 0

Views

Author

Andrew Woods, Jun 04 2013

Keywords

Crossrefs

Cf. A226348.

Programs

  • Mathematica
    LinearRecurrence[{4, 19, 1, -26, 1, 6}, {1, 3, 26, 163, 1125, 7546}, 21] (* T. D. Noe, Jun 04 2013 *)
  • Python
    # Depth-first search on 3 rows and n columns
    # Produces "count" and the list "result[]"
    # Omit the 2nd-last line if memory runs low
    n=5; rows=3
    count=0; result=[]
    def f(b, row=0, col=-1):
      global count
      for i in range(row, len(b)):
        for j in range((col+1 if i==row else 0), len(b[0])):
          if b[i][j]==' ':
            if i'+b[i][j+2:]]+b[i+1:], i, j)
      count+=1
      result.append(b) # omit this line
    f([' '*n]*rows); print(count)

Formula

Recurrence: a(n) = 4*a(n-1)+19*a(n-2)+a(n-3)-26*a(n-4)+a(n-5)+6*a(n-6) for n>5, a(0)=1, a(1)=3, a(2)=26, a(3)=163, a(4)=1125, a(5)=7546.
G.f.: (1-x-5*x^2+x^3+2*x^4)/(1-4*x-19*x^2-x^3+26*x^4-x^5-6*x^6).