A226388 Number of n-permutations such that all cycle lengths have a common divisor >= 2.
0, 0, 1, 2, 9, 24, 265, 720, 11025, 62720, 965601, 3628800, 130478425, 479001600, 19151042625, 191132125184, 4108830350625, 20922789888000, 1448301616386625, 6402373705728000, 466136852576275881, 5675242696048640000, 193688172394325870625, 1124000727777607680000
Offset: 0
Keywords
Examples
a(6) = 265 counting permutations with cycle types: 6; 4-2; 3-3; 2-2-2; of which there are 120 + 90 + 40 + 15 = 265.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(combinat): b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>1, 1, 0), `if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0, add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)* b(n-i*j, i-1, igcd(i, g)), j=1..n/i)))) end: a:= n-> b(n, n, 0): seq(a(n), n=0..30); # Alois P. Heinz, Jun 06 2013 # second Maple program: b:= proc(n, g) option remember; `if`(n=0, `if`(g>1, 1, 0), add( (j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..30); # Alois P. Heinz, Jul 04 2021
-
Mathematica
f[list_] := Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/ Apply[Times, Select[Table[ Count[list, i], {i, 1, Total[list]}], # > 0 &]!]; Table[ Total[Map[f, Select[Partitions[n], Apply[GCD, #] > 1 &]]], {n, 0, 25}]
Formula
a(n) = n! - A079128(n) for n >= 1. - Alois P. Heinz, Jul 04 2021
Comments