cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226435 Number of permutations of {1..n} with fewer than 2 interior elements having values lying between the values of their neighbors.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 422, 2226, 13102, 85170, 606542, 4697946, 39330982, 353985450, 3408792662, 34975509666, 380947661662, 4390028664930, 53368010874782, 682564606249386, 9162253729773142, 128794752680027610, 1892150024227428902, 28998220554100469106
Offset: 0

Views

Author

R. H. Hardin, Jun 06 2013

Keywords

Examples

			Some solutions for n=9:
..1...9...4...3...2...6...1...4...2...7...3...3...2...6...5....6
..7...2...7...1...5...3...7...1...5...2...8...1...3...1...4....3
..2...3...5...6...6...9...2...6...3...8...6...9...1...4...8....8
..4...1...6...4...3...1...5...5...1...6...9...4...5...3...1....1
..9...6...1...7...7...7...3...8...9...5...1...8...4...5...2....7
..5...5...9...9...4...5...9...3...6...9...5...5...9...7...9....4
..8...7...2...2...8...8...8...2...7...1...2...2...6...2...3....5
..3...4...8...8...1...4...4...9...4...4...7...7...8...9...7....9
..6...8...3...5...9...2...6...7...8...3...4...6...7...8...6....2
		

Crossrefs

Column 2 of A226441.

Programs

  • Mathematica
    CoefficientList[Series[Sec[x]+Tan[x] - (Sec[x]+Tan[x])^2 + (Sec[x]+Tan[x])^3, {x,0,20}], x] * Range[0,20]! (* Vaclav Kotesovec, Jun 11 2015 after Sergei N. Gladkovskii, all 210 terms match those in the b-file *)
    {1}~Join~Table[Sum[(n - 2 i - 1) Sum[(-1)^(j + i)*2^(-n - j + 2 i + 2) StirlingS2[n, n + j - 2 i] Binomial[n + j - 2 i - 1, n - 2 i - 1] (n + j - 2 i)!, {j, 0, 2 i}], {i, 0, (n - 2)/2}], {n, 2, 22}] (* Michael De Vlieger, Apr 08 2016 *)
  • Maxima
    a(n):=sum((n-2*i-1)*sum((-1)^(j+i)*2^(-n-j+2*i+2)*stirling2(n,n+j-2*i)*binomial(n+j-2*i-1,n-2*i-1)*(n+j-2*i)!,j,0,2*i),i,0,(n-2)/2); /* Vladimir Kruchinin, Apr 08 2016 */

Formula

E.g.f. (conjecture): (sec(x) + tan(x)) - (sec(x) + tan(x))^2 + (sec(x) + tan(x))^3. - Sergei N. Gladkovskii, Jun 11 2015
a(n) ~ n! * 2^(n+4) * n / Pi^(n+2). - Vaclav Kotesovec, Jun 11 2015
a(n) = Sum_{i=0..(n-2)/2}((n-2*i-1)*Sum_{j=0..2*i}((-1)^(j+i)*2^(-n-j+2*i+2)*Stirling2(n,n+j-2*i)*binomial(n+j-2*i-1,n-2*i-1)*(n+j-2*i)!)), n > 1, a(1)=1. - Vladimir Kruchinin, Apr 08 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 17 2024