cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226443 Number of distinct shadow transforms for sequences of length n.

Original entry on oeis.org

1, 1, 1, 3, 12, 48, 288, 1356, 10848, 70896, 588480
Offset: 0

Views

Author

Keywords

Examples

			The sequence (i, j, k) has shadow transform (0, 1, m) where m is the number of even numbers in {i, j}, so a(3) = 3.
		

Crossrefs

Programs

  • PARI
    sh(v)=vector(#v,i,my(n=i-1);sum(j=1,n,v[j]%n==0));
    a(n)={
      my(L=log(n+.5), t=primes(primepi(n)), D=divisors(prod(i=1,#t, t[i]^(L\log(t[i])))), nd=#D, v=[]);
        for(i=1,nd^(n-1),
            my(s=sh(vector(n,j,D[i\nd^(j-1)%nd+1])));
            if(!setsearch(v,s),
                v=vecsort(concat(v,[s]))
            )
        );
        #v
    };
    
  • PARI
    v=[]; fordiv(72,a, fordiv(72,b, fordiv(72,c, fordiv(72,d, fordiv(72,e, fordiv(72,f, fordiv(72,g, fordiv(72,h, fordiv(9,i, u=sh([a,b,c,d,e,f,g,h,i,0]); if(!vecsearch(v,u), v=vecsort(concat(v,[u])))))))))))); (5+1)*(7+1)*#v \\ computes a(10)

Formula

a(p+1) = (p+1)a(p) where p is prime.
a(n-1) <= a(n) <= n*a(n-1).