cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A237118 Number of white areas in the graph of elementary cellular automaton with rule 30 at generation n.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 28, 31, 36, 40, 43, 47, 51, 53, 56, 60, 65, 71, 74, 80, 86, 90, 94, 99, 104, 109, 113
Offset: 0

Views

Author

Philippe Beaudoin, Feb 03 2014

Keywords

Crossrefs

Cf. A070950 (rule 110), A237119 (analog for rule 110), A237120 (analog for rule 150). A226482(n) - 1 is the number of white areas on the line corresponding to generation n.

A226481 Table read by rows: run lengths in rows of A070950.

Original entry on oeis.org

1, 3, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 6, 2, 2, 1, 3, 3, 5, 1, 2, 1, 4, 1, 2, 2, 1, 3, 3, 2, 2, 1, 4, 1, 1, 4, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 1, 4, 1, 1, 4, 2, 2, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 1, 2, 1, 4, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 09 2013

Keywords

Comments

T(n,2*k) = numbers of consecutive ones in row n of A070950;
T(n,2*k+1) = numbers of consecutive zeros in row n of A070950;
sum(T(n,k): k = 0..A226482(n)-1) = 2*n+1.

Examples

			.             Initial rows               A070950, terms moved together
.  0:  [1]                                             1
.  1:  [3]                                            111
.  2:  [2,2,1]                                       11001
.  3:  [2,1,4]                                      1101111
.  4:  [2,2,1,3,1]                                 110010001
.  5:  [2,1,4,1,3]                                11011110111
.  6:  [2,2,1,4,1,2,1]                           1100100001001
.  7:  [2,1,4,2,6]                              110111100111111
.  8:  [2,2,1,3,3,5,1]                         11001000111000001
.  9:  [2,1,4,1,2,2,1,3,3]                    1101111011001000111
. 10:  [2,2,1,4,1,1,4,1,2,2,1]               110010000101111011001
. 11:  [2,1,4,2,2,1,1,4,1,1,4],             11011110011010000101111
. 12:  [2,2,1,3,3,2,2,2,2,1,1,3,1]         1100100011100110011010001
. 13:  [2,1,4,1,2,2,3,1,3,2,2,1,3]        110111101100111011100110111
. 14:  [2,2,1,4,1,1,3,3,1,2,3,2,1,2,1]   11001000010111000100111001001
. 15:  [2,1,4,2,2,1,1,2,1,1,5,2,7]      1101111001101001011111001111111
. 16:  [2,2,1,3,3,2,4,1,1,4,3,6,1]     110010001110011110100001110000001 .
		

Crossrefs

Cf. A226482 (row lengths), A005408 (row sums).

Programs

  • Haskell
    import Data.List (group)
    a226481 n k = a226481_tabf !! n !! k
    a226481_row n = a226481_tabf !! n
    a226481_tabf = map (map length . group) a070950_tabf
Showing 1-2 of 2 results.